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E=JOX+J i g S"+J2 g S"S"'
points pairs

+J ~ g(l)g(J)g(k)
3

triangles

+J y S(i)S(j)S(k)S( )

tetrahedra
(2)

d
dV '

„
" dV

bE(rJ, V)=gg„(o. ) b,E(n, V)=0 .

Considering a (eanonieal) ensemble of samples of given
concentration x, the probability of finding a given unit n

becomes a thermal average

E y E( r s) y~(()~(j)~(k)~(&) (3)

where the interaction parameters I J I can be volume
dependent. The Hamiltonian of Eq. (2) can also be writ-
ten in the form

P„(x,T)= (g„(o ) ),
and the excess enthalpy of mixing at the equilibrium
volume Veq,

where t enumerates tetrahedra, N4 is their number, and
E(p, q, r, s) is the energy of a tetrahedron [expressible as
linear combinations of the J's of Eq. (2), see Ref. 20]
with occupations p, q, r, s (zero or one). Subtracting from
E(p, q, r, s) the energies bH (x, T) =+ATE(n, V,q )P„(x,T) . (10)

b,H(x, T) =E[o,V,q] xEq —[Vq ]—(1 x)Etj—[Vi) ], (9)

becomes

N N~

N
E(0,0, 0,0)+ E(1,1, 1, 1)

of equivalent amounts of the pure constituents, defining
the multiple index n =(p, q, r, s), and the state-of-order-
dependent multisite correlation functions

gap nq v. v.(I) (P (k) (I)

N4

Eq. (3) becomes

bE(o, V) =QbE(n, V)g„((T), (5)

where the energy of the alloy at any state of order a is
expressed as a weighted superposition of the energies of
its building blocks, with weights g„((T ) describing the oc-
currence frequencies of each building block.

In general the lattice parameter (hence volume)
changes with composition. Hence, each of the interac-
tion "parameters" b,E(n, V) of Eq. (5) is, in fact volume
dependent, i.e., an equation of state at T =0 (note that
all traditional Ising model approaches' ' assume con-
stant interaction energies). The physical content of these
volume dependent parameters b E(n, V) can be conceptu-
alized in the following way. If all the N4 tetrahedra
have the same occupation numbers n, then Eq. (4) im-
plies that the multisite correlations are

(n)=5„

Conceptualizing such a state of. order as a periodic crys-
tal whose repeat unit is this tetrahedron, Eq. (5) lets us
interpret the volume-dependent parameters b,E(n, V) as
the excess energy of the ordered structure n. An alloy
could then be desired as a collection of all local atomic
environments [each occurring in the alloy with the fre-
quency g'„(o )] exhibited by the corresponding ordered
crystals. At any state
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8
n=0, 4

A1
Au type

AB
n=2
Llo

CuAu-I type

A38
n=1,
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TABLE II. Comparison of the ground-state properties (lattice constant a,'q', bulk modulus B "',

and formation enthalpy AH'"') of intermetallic compounds of noble metals as obtained by diferent

computational approaches to the local density problem. See caption to Table I for details. The AB

and A3B structures are Llo and 1.12, respectively. T and C refer to tetragonal (c&a) and cubic

(c =a), respectively.

a,'",' (A) B'"' (t-Pa) hH'"' (kca1/g-at. )

System

Cu3Au

CUAU

Present

3.
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nearest-neighbor approach hence implies that the energy
bE(o, V) of structures with an arbitrary arrangement
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Our results of Table III indicate that among the
noble-metal compounds Cu-Au
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TABLE VII. Predicted critical temperatures T„(in K) for order-disorder transitions in

Cu„Au4 „~~Cu„Au&, miscibility gap (MG) temperature, TMG, mixing enthalpies AH(X„, T=800),
and critical compositions X„ for order-disorder transitions.

Ti
T2
T3

TMG
(i)

AH( —', 800}
AH( —', 800)
5H( 3,800)

XI
X2
X3

Model A

1216'
1009
719

1821
1017

—0.39'
—0.06

0.244
0.490
0.688

Model B

1000
940
740

—1.01'
—1.31'
—0.79

0.250
0.490
0.690

Model C

703
725
531

—1.02
—1.39
—0.78

0.254
0.492
0.696

Model D

703
725
531

—0.98
—1.38
—0.90

0.250
0.490
0.713

Experimental

703'
725'
531'

—1.06
—1.22
—0.72

0.25
0.50
0.75

'Triple point for equilibrium between two disordered phases and CuAu, see Fig. 4.
q=0. 9425 is the fact converting CVM temperatures into the more accurate Monte Carlo results (see

Sec. V).
'Although the ordered phases are stabler at these compositions and temperatures, the disordered
phases still exist and their enthalpy can be calculated.

Ag-Au (Fig. 6) we predict at low temperatures stably or
dered compounds since both c'"' and AH'"' are negative.
Since these ordered phases both for Cu-Ag and for Ag-
Au are predicted to occur at low temperatures, they may
be dificult to detect.

Figures 7—9 show the calculated mixing enthalpies
[Eq. (10)] of these alloys,
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TABLE VIII. Calculated and measured partial molar enthalpies of solution in kcal/g-at.

Alloy

Cui „Au„

Agi —x Aux

Cul —x Agx

Partial molar
enthalpies

Au in Cu (Ap)
Cu in Au (Qi)
Au in Ag (Qp)
Ag in Au (Oi)
Ag in Cu (Op)
Cu in Ag (Qi)

a
+exptl

—3.9 (800 K)
—2.8 (800 K)
—4.8 (800 K)
—4.0 (800 K)
+

4/Xi18(4.)Tj
ET
BT
/Xi13 8.67 Tf
458.78 625.56 Td23.10523.

K)
+0

10523.

K)

modeialK)

+
+

modeialK)

+

0+3.—

3.

9—4.36++
—

4.

— 2.

8

—

2.

—

2.+2. +4.3.
(3.)Tj
ET
BT
/Xi13 6602 Tf
113.355695.22 Td'Relaxalutionpametelar3.aof3.3.and3.0
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lead to an even closer agreement with experiment.

V. MODEL C: SENSITIVITY OF THE
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&& [ V(x) —V'"']'+ (25)

where bH'"' is the value at V= V'"' and V "'—:V,q'(X„).
Here V(x) is found by solving

B (n)
= QP„(x, T) (1—K„)

dV
X

&& [ V(x) —V'"'] =0 . (26)

The graphical interpretation of Eq. (24) is given in
Fig. 12. Had one used the equilibrium volumes
V,q'(X„)=—V'"' of the ordered A„84 „structures for all
compositions x (i.e. , set K„:—0), the five solid lines in

Fig. 12 would have been horizontal. This corresponds to
models A and B where we assumed that each tetrahed-
ron of type n can be characterized by a volume V'"'
which is independent of its chemical environment.

Composition x (T = 500)
0.0 0.25 0.50 0.75 1.0

I
CP

E

0

C
~~ I
LU
U

O

10

t7—

7.1 8 9 10
Alloy equilibrium volume

V(x) (cm /mole)

FIG. 12. Schematic plot of the composition dependence of
the equilibrium molar volumes V,'~'(x) of ordered tetrahedra n

in a medium of composition x [see Eq. (24)]. Solid circles
denote the values of V,'q'(X„) for the perfectly ordered phases
A„B4 „at stoichiometric compositions X„=O,4, —,', 4, and 1.
The unrelaxed model (E =0) corresponds to the case where all
solid lines are horizontal and each passes through the corre-
sponding V,'q'(X„) value. The fully relaxed model (K = 1) cor-
responds to the case where all five lines collapse into the single
dashed line passing through all V,q'(X„) values.

um volume of the al/oy at the composition x. Since for
small volume changes the energy scales as
[V(x)—V,'q'(x)], Eq. (24) shows that the energy of a
cluster embedded in an alloy of molar volume V(x) is

1 B'")
b,E [n, V(x ) ]= b.H "'+— ( 1 —K„)V(n)

While this assumption (analogous to the classical con-
cept ' of the existence of transferable atomic radii) has
been the cornerstone of structural chemistry since
Bragg and Pauling demonstrated that numerous
packing arrangements of the same atoms in different
compounds can be explained by assuming fixed atomic
volumes (or radii), it is probably insufficiently accurate
for phase-diagram calculations, given their extreme sen-
sitivity to small changes of VI"' (Sec. V). The effect of
K„&0 is then to allow for such internal relaxations. No-
tice that K„&0 does not imply any changes in bond dis-
tances of tetrahedron A„B4 „ in the alloy, but merely
that the equilibrium values of V,'"„'(x) equal those of the
pure ordered compounds V,q'(X„) only at x =X„. The
opposite extreme to K„=O is K„=1 (dashed line in Fig.
12), where all of the distinct volumes V,q'(x) become n

independent [equaling V(x)], as in the virtual lattice
model. This viewpoint argues that atoms lose their iden-
tities in an alloy, forming effectively "average atoms"
with correspondingly average atomic volumes.

Rather than seek a set of n-dependent A„values, we
instead pose the following question: Does there exist a
single effective relaxation parameter K for a given binary
alloy which when applied to the properties of the five ac-
tual ordered phases (model B) cures all of the discrepan-
cies of this phase diagram and thermodynamic proper-
ties relative to experiment? This reduction to a single
n-independent relaxation parameter also simplifies the
problem since V(x) and 8 (x) becomes K dependent
only indirectly through P„(x,T) [as (1 —K) can be taken
out of the sum over n in Eq. (26)].

In addition to cell-internal relaxation modeled by
K&0, one could envision local atomic cell-external re-
laxations to take place [i.e., avoid our second assumption
(ii)]. These
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and sublattice
Y= relaxation
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Cu Atomic Fraction x Au

FIG. 13. Calculated phase diagram of Cu-Au using a single
relaxation parameter K=0.2077 (Table VI) and the results of
model B. Observe the nearly perfect fit with the experimental
phase diagram of Fig. 1(a).

i.e., Cu3Au~~Cup 75Aup 25, CuAu~~Cup &Aup &, and
CuAu3~~Cup 25Aup 75 The discontinuity is larger for
Cu3Au and smaller for CuAu3. [While we find the tran-
sition region to be very narrow (less than 0.1 K) for
Cu3Au, for CuAu3 the region extends in a range of al-
most 40 K. The discontinuities for CuAu and CuAu3
are very dificult to observe experimentally because, in
the case of CuAu there is a tetragonal distortion when
crossing the region, while, for CuAu3, the transition re-
gion is so broad and the volume discontinuity so small
that it is unlikely that the internal strains could prevent
the formation of multiphase domains. On the other
hand, the discontinuity of Cu3Au has been observed to
be some thousandths of A, while our calculated result
is 0.0080 A, in reasonable agreement with experiment. ]

2. Cu-Ag

pies resulting from model D are shown in Table VIII. A
perfect fit is obtained for K=0.20772, indicating that
Pauling's view (K =0) is only —20%%uo wrong, whereas the
virtual lattice result (K =1)
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Figure 14 depicts the excess probabilities

b P„(x,T) =P„(x,T)—P„'"'(x) (27)

with respect to the random (R) probabilities, as a func-
tion of temperatures, demonstrating that even for very
high temperatures ( —2000 K) the clusters Cu3Au,
CuAu, and CuAu3 exist considerably in excess (& 10%)
of what random statistics would predict. Simple random
disorder models are hence inapplicable. Figure 15 shows
bP„(x, T) as a function of composition, demonstrating
that the mixed tetrahedra (Cu„Auq „ for n =1, 2, and
3) exist in excess, whereas the pure tetrahedra (n =0 and
4) are deficient. This "clustering" phenomena leads to
pronounced nonideal behavior of the enthalpy and entro-
py. Defining the "interaction parameters"

I4 (x, T) =KS(x, T)/x(1 —x ),
QH(x, T)=AH(x, T) jx(1—x),
IIF(x, T) =bF(x, T)Ix(1—x),

(28)

where bS(x, T) is the nonideal mixing entropy,
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model D to those obtained by the simpler E-G ap-
proach (see the Appendix).

ACKNOWLEDGMENT

G(x)=(1—x)f x'Z(x')dx'
0

1+x l —x' Z x' dx'
X

(A6)

Our present approach to the phase diagram of a
binary A„B& system is based on representing the ex-
cess energy b E(cr, V) of the alloy in a state of order cr as
a superposition of equations of states b.E(n, V) of the or-
dered structures A„B4

bE(cr, V) =gbE(n, V)g„(o.),
n

and determining the correlation functions g„(cr )

=g„(x,T) by solving this Ising Hamiltonian using

I bE(n, , V) I as input. These bE(n, V)'s are the excess en-

ergies of an ordered structure AnB4 „with respect to
the energies of equivalent amounts of A and B at their
respective equilibrium volumes Vz and Vz

(Al)

b E(n, V) = —,'E [ A „84 „., V]— E~ ( V„)—— E~ ( Vs ) .

(A2)

Ferreira et ah. have proposed an alternative ap-
proach which is simpler, but requires that the molar
volumes of the 'thermodynamically selected config-
urations be approximately state of order independent.
In this "s-G model" bE(n, V) is replaced by a separable
form

bE(n, V) =s'"'+ (1—X„)f xZ(x)dx
0

+X„f (1—x)Z (x)dx, (A3)
X( V)

where s'"' are the "chemical energies, " and Z(x) is

given by
2

8(x) dV
V(x) dx

Here the constant c'"' is the volume-independent "chem-
ical energy, " V(x) and 8 (x) are the equilibrium volume

and bulk modulus of the alloy, both functions of the
concentration x, but otherwise independent of the state
of order, X( V) is the inverse function of V(x), and X„ is

the stoichiornetric concentration in the ordered com-
pound n. At the equilibrium volume of the alloy, the
enthalpy is

bH(x, T)=QP„(x,T)bE(n, V,q)
n

=QP„(x, T)EI"'+G (x), (AS)
n

(A4)

wh«e P„(x,T) are the thermal average of the correlation
function g„(x,T) and

This work was supported in part by the Office of En-

ergy Research, Materials Science Division, U.S. Depart-
ment of Energy, under Grant No. DE-AC02-77-
CH00178.

APPENDIX: COMPARISON OF THE e-6
APPROACH AND THE PRESENT

EQUATION-OF-STATE APPROACH TO THE
PHASE DIAGRAM PROBLEM

because X ( V,q ) =x. From Eqs. (A3) and (A6) one has

bE(n, V,q)=st"'+G(X„)—=bH'"' . (A7)

In this Appendix we compare these two approaches.
Comparing b,E(n., V) of Eq. (A2) to b,E(n, V) of Eq. (A3)
we note the following.

(i) Both have the same value at equilibrium (a value
which equals the formation enthalpy AH'") of the or-
dered phase n) since e "' is calculated from the same
given bH'"' value [Eq. (A7)].

(ii) The minimum occurs at the same equilibrium
volume VI,q' = V(X„), since the given ( V',"„'

I are used to
construct Z(x) of Eq. (A4).

(iii) The second volume derivatives of these excess en-
ergies [bulk modulus 8'"'=8 (X„)] are the same since
{8'"']is used to construct Z (x) of Eq. (A4).

(iv) The third volume derivatives of the excess energies
are, in general, not the same. In the c-6 approach these
are related to higher-order composition derivatives of
V(x) and 8 (x), whereas in the present equation of state
approach the third volume derivative of the energy gives
the pressure coefficient B~"' of the bulk modulus.

To assess the role of B~"' on the phase diagram we
have recalculated the phase diagram of Cu-Au in model
C (Table VI) using our standard equation of state ap-
proach, but set all Bz"'———1. In this case the equation
of states of Eq. (A2) reduce simply to the harmonic form

B(n)
bE(n, V) =bH'"'+. ( V —V'"')
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B'"'&0) is small. The clustering phenomena observed
here (Fig. 15 and Sec. VII) simply suggests that the sys-
tem reduces the population of the most strained clusters.
This weak dependence of the phase diagram on
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of [
V'"I,BI"'I (Fig. 19, solid curve) and the correspond-

ing interpolated EI"' values (Table X), we have performed
a CVM calculation of the phase diagram. The results
are shown in Fig. 20. We find excellent agreement with
the direct equation-of-state CVM approach (Fig. 13).

On tne other hand, some thermodynamic potentials
depend not on G(x) but on its derivative. For instance,
the chemical potential p has a term

2
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FIG. 20. Calculated phase diagram of Cu-Au in the c-G ap-
proach to model D, using the c ' and G(X, ) values




