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Structural models needed in calculations of properties of substitutionally random A ] B alloys

are usually constructed by randomly occupying each of the X
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different diagonal energies for different C atoms). In ac-
tuality, possible nearest-neighbor arrangements around C
include CA38 and CA83 (C3„symmetry), CAzBz (D2d
symmetry) as well as CA4 and C84 (Td symmetry); more
configurations occur when one proceeds to more distant
shells. Each of these CA„84 „(0~n ~4) clusters could
contribute differently to a given phybnrcl
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transitions, " ' ' which can be thought of as folded (pseu-
dodirect) excitations, and can be described also by the
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lander, and Kleinman; the —1000 atom cell of
Pb, „Sr„Sused by Davis; the -2000 atom model of
(GaAs), Ge2„used by Davis and Holloway; and ear-
lier model calculations by Alben et a/. , with
8000—10000 atoms, and by Henderson and Ortenburger
on disordered 8—12 atom cells
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to describe disordered alloys with terms (and accuracy)
equivalent to those with which state-of-the-art methods
address simple periodic crystals. Indeed, since we are
dealing with periodic crystals Is), their physical proper-
ties E can be calculated by (first-principles, self-
consistent) band-structure techniques, avoid-
ing the simplified empir/Xi5 11.21 Tf
179.14 be



9628 WEI, FERREIRA, BERNARD, AND ZUNGER 42

than zero (denoted in Table I as "PE"); these occur at
rather short distances from the origin for small N. Clear-
ly, this standard method for creating periodic, quasiran-
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TABLE II. Special, X-atom fcc quasirandom structures at x =
—,'. This table gives the empirical formula, the unit cell vectors in

units of half the lattice constant, the designation of the SQS-N as a superlattice (SL) and the correlation functions 11„.The square
brackets next to Hz give the degeneracy factor DI, The deviations of HI, from zero measures errors relative to the infinite, per-
fectly random x =

—,
' alloy. The designation of the superlattice is illustrated as follows: the notation "A,
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(a) SQ8-2 (b) SQS-4
aE &L ~ &E 4L
%F

4E A~ ~ ~ IE

(c) SQS-8

8) [113]
~ 4 L ~A & &ML

alloy [Eq. (2.8)]. It is, however, a simple matter to apply

~
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TABLE IV. Number of neighbors to a given atom in the SQS-4, the average & 0 ) of mth shell neighbors of an opposite type, and
the corresponding result &0 )s for the perfectly random alloy [Eq. (3.2)]. The number of B neighbors is the shell coordination num-
ber (CN) minus the number of A atoms.

Sublattice Occup.

First
shell

CN=12

Second
shell

CN=6

Third
shell

CN =24

Number of A neighbors in SQS-4
Fourth Fifth Sixth

shell shell shell
CN=12 CN=24 CN=8

Seventh
shell

CN =48

Ninth
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A (1), (0,0,0)a

A (2), ( —,', —,',
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Since our interest in the present paper is in comparative
simulations of the perfectly disordered (random) alloy, we
first provide bH(x) as obtained by cluster expansion in
the T~ee (random disorder) limit. By Eqs. (2.7) and
(2.8), we see that at x =

—,
'

~H'"( —,
'

) =Do, t &o, i

hence (since Do, = 1), Eq. (2.10) gives

(4.2)

W,

b,H' '( —,
'

) =—g [II,(s)] 'E(s), (4.3)

where E (s) is the excess energy of the ordered structure s
at the equilibrium volume V(x =

—,
'

) of the random alloy,
and II is a matrix inverse. Equation (4.3) provides a
simple way to calculate the mixing enthalpy of the x =

—,
'

random alloy from the known total energies of N, period-
ic structures, without resort to complex solutions of the
Ising Hamiltonian. In Ref. 55(a), we illustr72 /Xi11 9.2ng

illustmT
/Xi11 8.5T
/8.9911 9.02 In



9634 WEI, FERREIRA, BERNARD, AND ZUNGER 42

13.9, and 16.5 meV/4 atoms, compared with 19.5 in the
cluster expansion) appear reasonably well converged.

The fact that hH'"' of random alloys lends itself to
calculation in terms of the
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in good agreement with our result of Eq. (4.5). A
different experimental value of
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E. Electronic structure

The electronic structure of substitutional isovalent
semiconductor alloys exhibits a number of experimentally
established features.

(i) While band-edge transitions remain nearly as sharp
as in the constituents, alloy broadening is observed at
other energies.

(ii) "No-phonon indirect transitions" are observed;
while they resemble I ~X transitions in the binary, pko-
nons are nevertheless not involved.

(iii) Most transition energies bow downwards with x,
i.e., their energies lie below the concentration-weighted
average transition energies of the constituents. Different
transitions have different bowing parameters. '

(iv) Valence-band states observed in photoemission are
often split into A-like and B-like components.

All of the features can be understood qualitatively by
noting that SQS's closely approximate the atomic
geometry of random alloys and that, at the same time,

~1c ~lcZB

X1c M5c + I 4c

X3, M1, +M2, + I 1, ,

1.1, ~R1,+R4, ,

(4.8)

where ZB denotes zinc-blende states, and superlattice
states are denoted by a bar. Here, I =(0,0,0); M= (0,1,0),
and R =(—,', —,', —,') (in Cartesian coordinates with units
2m. /a). For SQS-4, we have the folding relations:

these SQS's are superlattices . Recall that superlattice
states %, (Kr) of band index i and wave vector K can be
analyzed in terms of the states P,.(k, r) of the constituents

using compatibility and "folding" relationships. For ex-

ample, the (001) superlattice SQS-2 (with repeat period of
1) exhibits the compatibility relations' (shown here as
appropriate to mixed-cation superlattices with the origin
on the anion site)

r"(o,o, o), x,"(ool), r."(—,', —,', o), x".( ——,', ——,', o)-r(o, o,o),

X„"(1OO), X,"(O1O), ZzB(-,', ——,', O),
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TABLE VII.
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TABLE IX. LAPW calculated crystal-field splitting AcF and spin-orbit splitting 6p (all in eV) at the
VBM [from Eq. (4.12)] for seven disordered 50%-50% semiconductor alloys and

and(4.and
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The first step measures the "volume-deformation" (VD)
contribution bvD, the
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TABLE X. LAPW-calculated semirelativistic bowing
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amounts of the binary constituents [i.e., bz of Eq. (1.1)],
and then (ii) applying this change to the average of the
measured' (low-temperature) band gaps of the binary
constituents. Since the LDA error largely cancels in step
(i), this procedure is likely to produce a reasonable esti-
mate. The results for the predicted direct I v~M~I

„

gap are given in Fig. 13 where spin-orbit effects have been
included. We see that relative to the average gap
[Eg( AC)+Es(BC)) I2, the direct gap decreases in the se-

quence chalcopyrite ~random alloy ~CuAu ~CuPt.
The mechanism for this was discussed in detail by Wei
and Zunger and by Bernard et al. ' These results can
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amine the rate of convergence. This is done as follows:
Using band theory we have first calculated the direct
I „,~I „band gap Es(s) of E, ordered structures
s = AC, BC, CuAu-like (CA), chalcopyrite (CH), CuPt-
like (CP), the ( AC)z(BC)2 (001) superlattice (denoted Z2)
and SQS-4. These values, evaluated at the average alloy
lattice constant a =(a„c+azc)/2 and averaged over
crystal-field splitting are given in the first eight columns
of Table XII. Using Eq. (2.10), we then find the X,
"band-gap interaction
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TABLE XII. The first eight columns give the (LAPW-calculated, unless otherwise noted) direct band gaps at I (in eV) at the

50%-50% average volume for
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