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ures, (ii) the pair terms (2,1), (2,2), (2,3), and (2,4) for 
1st, 2nd, 3rd, and 4th fcc neighbors (Sth in bcc), and 
(iii) the 3-body (3,1) and 4-body (4,1) terms [replaced 
by (3,2) and (4,2), respectively, for bcc structures]. As 
shown by connolly and Williams, ~ since rIF(s) and DR 
are known for such periodic configurations, H we can 
obtain the values of the NF functions {JR} from a 
least-square fit 9 of {E(s)} to Eq (3); the fit error (Ta- 
ble I) already provides some measure of the adequacy 
of the truncation. Note that since E(s) is obtained 
from a first-principles (LAPW) calculation in which 
all lattice sums are calculated to convergence, the ef- 
fective interactions Jl of Eq. (2) represent a renormal- 
ization of all potentially long range terms; J! is hence 
a sum of total energies, not an interaction potential, s 
Since E(s) is generally a function of volume H-12 V, 
the interactions J~ depend on V, too. It is useful (see 
below) to transform these { JF(V)} into another expan- 
sion in terms of volume-independent interactions Y~-. 
This can be done by the "e - G" expansion L1 in which 
we replace the equation of state E(~, V) for structure 
a by the function U(o, V) which has the same value 
for the first three volume derivatives at equilibrium as 
E(a, V), yielding 

E[~, V(~)] ~ Vie, V(~)] = G(~)+N ~ Z)F fIF(~) VF, 
F 

(4) 
where G(z) is a closed-form function 1. of the alloy vol- 
ume V(x), the bulk modulus B(x) and its pressure 
derivative B'(x). [Reference 11 illustrates that Eq. (4) 
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reproduces Eq. (3) with excellent precision]. Equation 
(4) shows that the excess energy of any configuration 
a can be separated into a configuration-independent 
"elastic energy" G(z) of the medium (zero only when 
all atomic species have the same molar volume) plus a 
sum of chemical "substitution energies" (the standard 
generalized Ising problem 8) which represents configu- 
rationally dependent fluctuations about this medium. 
The relative stability of phases at the same z is hence 
determined by their substitution energies, while G(z) 
controls disproportionation of a single phase into mul- 
tiple phases of unequal molar volumes. In many pre- 
vious studies, size molar many volumes. of s t a b i l i t y  
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cubic fee or bcc sites) and for ~relaxed" geometries (en- 
ergy minimized with respect to all structural degrees 
of freedom consistent with their respective space group 
symmetry).  

3. R e s u l t s  

Table I shows that  the cluster expansion with 
N,  = 12 structure and NF = 8 figures describes the 
energies of the unrelaxed ordered structures to within 
the underlying LAPW accuracy, l° Hence, we will use 
this expansion to search for the ground state among 2 N 
lattice configurations. Table II shows a robust predic- 
tion of the energies of the random alloy (both relaxed 
and unrelaxed) using different sets of {PF} and that 
the energies of unrelaxed ordered structures are pre- 
dicted for these systems to within 10 meV/atom even 
if we use N,  = 10. To 
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(hence, L l l  ordering is disallowed) and take G(x) = 0 
(hence, neglect strain energies resulting from A - B 
size-mismatch). Such simplifying approximation can 
not he used here. We have hence conducted a ground 
state search of 2 8 lattice configurations using our full 
{~,,~} sets, but  limiting N to 16 fcc (bcc) sites per 
primitive unit cell. Structures with larger cells could 
be missed. We hence search 2 ~e .~ 65,000 structures 
for each compound. 

Our predicted T = 
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