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with the results of the self-consistent ab initio 
calculations based on the local density formalism 
[12, 13]. We focus on the following questions: 

(i) How well can ab initio band theory 
describe the first few (low-angle) structure 
factors amenable to such experiments? 

(ii) Can higher-index structure factors 
(that are difficult to measure by electron 
diffraction [9]) be neglected for the 
purpose of assessing the overall charge 
redistribution in the solid relative to free 
atoms? 

(iii) Is the overall charge redistribution 
affected by the inclusion of the 
Debye-Waller temperature factors (that 
are difficult to calculate by ab initio 
methods)? 

(iv) Can the charge redistribution in NiAI be 
characterized as predominantly "ionic", 
"covalent" or "metallic"? 

Questions (i)-(iii) were addressed previously [10, 11] 
for GaAs in the context of the electron diffraction 
measurements of Zuo et al. We extend here our 
previous study to an intermetallic system. 

2. CALCULATED AND MEASURED QUANTITIES 

2.1. Total charge densities 

We start by a summary of the measured (expt) 
[equations (1)-(5)] and calculated (calc.) [equations 
(6)-(8)] quantities that will be compared below. 

Using the "rigid atom approximation" [14], the 
dynamic structure factors for momentum G = 2~z/a 
(h, k, l) are 

M 

F~xpt(G ) = ~ p~(G)e~C"~T~(G) (1) 

where p~(G) is the Gth Fourier component of the 
charge density contributed by sublattice ~ (whose 
position vector is z~) in the unit cell, and T~(G) is the 

's site temperature coefficient 

T,(G) = e -c'p' .G (2) 

where /~, is the anisotropic temperature coefficient 
tensor at site ~t, 

where the result naturally depends on the highest 
momentum (Gin. x) included in this sum (as we will see 
below, current high-precision experiments are 
limited to rather small cut-off values Gmax). If the 
temperature factor can be deconvoluted from 
equation (1), one can construct the static (purely 
electronic) structure factor 

M 

pewt(G) = ~ p,(G)e 'C''' (4) 
~ t = l  

from which one can synthesize, in analogy with (3), 
the static electronic density 

Gmax 

Pexpt(r, Gmax)= ~, pewt(G)C C'' (5) 
{3 

(Note that we consistently denote dynamic and static 
quantities as F and p, respectively.) 

While diffraction experiments produce discrete 
Fourier components of the charge density, electronic 
structure calculations for periodic crystals can 
produce the total static density Pcalc(r) directly in 
coordinate space. This is obtained by summing the 
wavefunctions squares over all occupied band indices 
i and Brillouin zone wavevectors k enclosed within 
the Fermi energy EF 

CF 

Pc.It (r) = ~ N, (k )~*  (k. r)~O,(k, r) (6) 
i,k 

where Ni(k) is the occupation numbers of band i. The 
Fourier components of the static density can then be 
computed yielding 

if pcalc(G) = ~ Pcalc(r)e -iG't dr (7) 

where fl is the unit cell volume. Since only limited G 
values are accessible experimentally, to compare with 
experiment we then synthesize a truncated static 
density by filtering out all Fourier components above 
a given momentum of Gma x 

Gmax 

pcalc(r, Gmax) = ~ pcalc(G)C c'r. (8) 
G 

If the temperature factors can be deconvoluted from 
the measured structure factors, the resulting static 
density P,wt(r, Gmax) of equation (5) can be compared 
with the calculated quantity p ~  (r, Gma ×) of equation 
(8). This was accomplished, for example for the 
monoatomic Si crystal [15]. Failing to do so requires 
the introduction of temperature factors into the 
calculated charge density. The obvious difficulty 
here is that while the measured structure factors 
represented by the "rigid atom approximation" [14] 
[equation (1)] naturally represent linear contributions 
from atomiclike scattering centers ~t, there is 
no unique way of partitioning the calculated three- 
dimensional density Pcalc ( r )  into atomiclike quantities. 
Consequently, even if the temperature coefficients 
{T~ } are known, it is not obvious how to associate 
them with identifiable "scattering centers" ~ in the 
calculated density for systems having more than one 
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Fig. 1. (a) Static total electron density p (r) along the nearest 
neighbor <111 > direction. Solid line is the direct LAPW 
result [equation (6)] while the dashed line is the finite Fourier 
representation of the total electron density pca~¢(r, Gb~g ) 
[equation (8)] using a very large cut-off Gbig = 2n/a(7, 6, 5), 
i.e. 163 stars. Clearly, even when that many stars are 
included in a Fourier series, it still exhibits significant 
oscillations in the bonding region missing in the "exact" 
density. (b) Analogous results for the static density defor- 
mation Aps=p(r) [from equation (15)], showing that this 
quantity is adequately described by a Fourier representation 
outside the core regions [even though we used a smaller 

cut-off Ghig = 2r~/a(6, 3, 1)]. 

gives the directly calculated (Gma x ~ oo) total electron 
density p¢~=¢ (r) of  equation (6). It is compared  with the 
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accurate measurements of crystalline structure 
factors to date. We also include in this table the 
"forbidden" (222) reflection measured by Alkire et al. 
[34] and the structure factors of Saka and Kato [35], 
from which we subtracted the contributions of 
anomalous dispersion and nuclear scattering [8]. The 
calculated values for Si were obtained in a precisely 
parallel way as those of NiAI, solving equation (18) 
using the LAPW method with the same 
numerical approximations. The Debye-Waller factor 
B=0 .4632  is used [36]. We see that theory 
reproduces 
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Fig. 4. Contour plots of the static and dynamic deformation 
density in the [110].plane of NiAI. Adjacent contours are 
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4.4. Static vs dynamic deformation electron density 
distributions 

As discussed above, the immediate product of 
electron structure theory is the static density p(r), 
while that of the diffraction experiment is the dynamic 
density F(r); addition of temperature factors to the 
theory, or their deconvolution from experiment can 
be done only under some model assumptions. It is 
therefore of interest to compare the global features 
obtained in a static deformation density map 
Apsup(r, Gmax) and a dynamic map AFsup(r, Gma×). 
Considering the ratios Fcalc (G)/pcalc (G) and 
Fsup(G)/psup(G ) in Table 1, one notes only a very 
gradual attenuation of the structure factors due to the 
temperature effect: from 0.984 for G = (100) to 0.787 
for G = (400). It is hence not obvious that in general, 
temperature effects will "wash out" the contribution 
of the high-Fourier components to Apsup(r ). To test 
this, we show in Fig. 4(d-f) the dynamic counterpart 
AFsu p(r, Gma x) to the static deformation map 
Apsup (r, Gmax) shown in panels (a-c). We see that the 
static deformation map captures all features of the 
dynamic deformation map, in contrast with the 
expectation of Zuo et al. [20]. This means that (i) 
the current inability to measure accurately high-G 
structure factors poses a real limitation, as the Ap(r) 
map is affected by these terms [compare Fig. 4(d) with 








