










similar to that obtained by exact direct diagonalization, but
that when less than 15G Bloch bands are used, the band
structure suddenly becomes much worse. Note in particular
how for 8 or 5G bands the energy of theX1c band as ob-
tained ink�p is ;20 eV too high and the curvature~hence
effective mass! of the valence band reverses sign. The situ-
ation is similar for AlAs and Si~not shown!.

To show how manyG Bloch states$unG% are needed to
describe the directly calculatedX Bloch stateunX of bulk
GaAs, we plot in Fig. 5 the closure quantity

Pn~Nb!5 (
m51

Nb

z^umGuunX& z2 ~25!

for n51, . . . ,8,wheren51 is the lowestX1v valence band,
n54 is the highestX3v valence band, andn55,6,7,8 are the
lowest four conduction bands, respectively. Here
Pn(Nb)51 means that thenth X-point Bloch state can be
described exactly by the firstNb G-point Bloch states. As we
can see from Fig. 5, there is a sudden drop ofPn(Nb) for
Nb less than 15. This is consistent with the band-structure
results in Figs. 3 and 4. The situation is qualitatively similar
for AlAs and Si ~not shown!. We conclude that 15 zero-
wave-vector bulk bands~30 with spin! are needed for a
qualitativelycorrect description of the dispersion relation in
bulk solids, while about 150 bands are needed for aquanti-
tativelyconverged (<122 meV! description. We will even-
tually @Sec. IV A# find ways to obtain aquantitativedescrip-
tion using only 15 bands.

C. k�p for �GaAs�p /�AlAs�p superlattices:
Truncated expansion

Having tested thek�p convergence for the bulk solids, we
next examine how thek�p errors in the bulk lead to errors in
the superlattice made of these bulk solids. As discussed at
the beginning of Sec. III,k�p calculations with finite-Nb

values can lead to three error types. We will focus our atten-
tion in this section on thek�p band-structure error~a!. As in
Sec. III A, in this section too the eigenfunction equation er-
ror ~b! will be removed by usingNm5369, much larger than
Nb . The unitary connection error~c! cannot be removed eas-
ily. For the purpose of the comparisons made in this section,
we deliberately setŨ(n,m)5dn,m . Since this ansatz is now
common to allNb values, one could hope that the unitary
connection error~c! could be partially canceled out when we
compare results for differentNb values.

Figure 6 compares the exactk�p results@shown by pluses
with Nm5369 andŨ(n,m) of Eq. ~22!# with results of~i!
Nm565 and Ũ(n,m) of Eq. ~22! ~diamonds! and ~ii !
Nm5369 and Ũ(n,m)5dn,m ~squares!. In this figure,
Nb565 is used in all three calculations. By comparing the
pluses and diamonds in Fig. 6, we can see that the eigenfunc-
tion equation error~b! for Nm565 is rather small~about 3
meV!. By comparing the pluses and squares, however, we
see that the error caused by settingŨ(n,m)5dn,m is large,
about 18 meV.@This does not mean that the typical unitary

FIG. 3. Comparison of bulk GaAsk�p band structure with different numberNb of G-like basis functions~dashed lines!. The solid lines
are theNb565 results, which equal the plane-wave results using the polyhedron zone of Appendix A.
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UA~n,m,2G/2!5eium(
p51

Nb

UA~p,m,G/2!OA~p,n,2G!.

~31!

This equation is automatically satisfied forNb5‘, but
is no longer exactly true for a finiteNb . To satisfy it
for G/25kX and for G/25kL , we need to modify
OA(B)(n,m,2kX) and OA(B)(n,m,2kL) from their original
values given by Eq.~28!. This modification is described in
Appendix B. ForOA(B)(n,m,G) evaluated at otherG’s, the
direct result of Eq.~28! could be used in Eq.~27! without
any change.

Once Ũ(n,m) and OA(B)(n,m,G) are obtained,
the Hamiltonian matrixHA

NS(mk8,mk) can be readily calcu-
lated from Eq.~24!. However, because the approximations

are made in conjunction with the finiteNb , the
HA
NS(mk8,mk) calculated from Eqs.~24!, ~23!, ~20!, and~17!

is not exactly Hermitian. This non-Hermitian error can be
measured by

a5 (
mk8,nk

uHA
NS~mk8,nk!2HA

NS* ~nk,mk8!uY
(

mk8,nk
uHA

NS~mk8,nk!u. ~32!

We find that a is of the order of 0.531023 for our
GaAs/AlAs systems.@Had we usedŨ(n,m)5dn,m , this a
would be ten times larger.# To circumvent this non-

FIG. 8. Effects of reducingNb on thek�p GaAs/AlAs~001! superlattice valence bands. The calculation conditions are the same as in Fig.
7. The squares are the same as the squares in Fig. 6~b!.
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Hermitian problem, we simply symmetrize the matrix as
@HA

NS(mk8,nk)1HA
NS*(nk,mk8)#/2 and then diagonalize the

symmetrized matrix.

D. Choice of the interfacial potential

In Sec. IV C, the calculation ofSA(B)(n,m,k) required a
smoothw(r ) function @with zeroW(k) outside 2BZ#. How-
ever, in reality, the interface could be sharper thanVw

NS(r )
calculated from suchw(r ) via Eq. ~10!. Here we will intro-
duce an interfacial potential to restore the sharpness of the
interface fromVw

NS(r ):

VIF~r !5Vsharp
NS ~r !2Vw

NS~r !, ~33!

where the superscript IF stands for interface.
VIF(r ) defined in Eq.~33! is localized at the interface and

is the interfacial potential for the whole system. We first
break it down to its constituents belonging to each primary
cell of the interface. Let us first define an interface primary
cell of A(B) as a primary cell for materialA(B) that has at
least oneB(A) neighboring primary cell. We will useR to
denote one interfacial primary cell and its position and
A/I (B/I ) to denote the domain of the interfacial primary
cell. To break downVIF(r ), we have

VIF~r !5 (
RPA/I

VA~r2R,R!1 (
RPB/I

VB~r2R,R!, ~34!

where VA(B)(r ,R) is the interfacial potential contribution
from interfacial primary cellR. It should only depend on the

FIG. 9. Effects of reducingNb on thek�p GaAs/AlAs ~001! superlatticeR̄/X̄(L) conduction bands. The calculation conditions are the
same as in Fig. 7.

FIG. 10. Fittedk�p band structures of~a! bulk GaAs and~b!
AlAs usingNb515.
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to theG1c(GaAs) state.
23 At the ~anti!crossing point, there

could be aG-X coupling. The computational difficulty of this
problem is that in a supercell description, very thick AlAs
barriers are needed to avoid overlap of neighboring GaAs
quantum-dot wave functions.23 We have calculated GaAs
quantum dots up to 160 Å in diameter, while the size of
AlAs matrix is kept at 50350350 primary cells. This cor-
responds to a 250 000 atoms.

TheCA(B)(k) structure factor defined in Eq.~19! and its
counterparts for the interfacial potentials in Eq.~37! were
calculated using fast Fourier transforms.k-point selection
spheres are placed at theG point and the threeX points using
slightly larger diameters of (26, . . . ,0, . . . ,6! and
(24, . . . ,0, . . . ,4! than the ones used in Fig. 14. There are
2260k points in total. When the selectedk point is inside the
sphere of theG point,u5,k

GaAs is used in the basis set. When the
selectedk point is inside the spheres of theX point, u5,k

AlAs is

used in the basis set. So, the total number of basis function is
also 2260. The total CPU time for calculating the matrix
Ha
tot(mk8,nk) and diagonalizing it is less than 30 min on an

IBM/6000 workstation model 590. The calculation takes
about 100 megabyte memory, mainly to host the
226032260 double precision complex matrix
Ha
tot(mk8,nk).34

The results are shown in Fig. 16. The crossover diameter
between type-I and type-II behavior is found to be 70 Å.
However, surprisingly, we find no coupling between theG-
andX-induced states. Due to the spherical shape of the quan-
tum dot, the threeX-point states are degenerated. They have
a different symmetry representation than the single degener-
atedG state. Thus theG andX states do not couple in this
case. To get aG-X coupling, some other shapes~e.g., disk!
of the quantum dot, or a spherical dot with an As atom at its
origin, is needed. In addition, pressure-dependent rather than
size-dependent eigenenergy curves might be needed to find
small G-X anticrossing since smooth curves are available
only in the pressure-dependent case.

VI. COMPARISON WITH OTHER METHODS

In this section we summarize briefly the similarities and
differences of the current method with alternative ap-
proaches.

A. Comparison with the standard k�p model

Formally, our method differs from the standardk�p
model by the use of au0 basis of pureA @Eq. ~12!# leading to
the appearance of an overlap matrixSA(n,m,k) @Eq. ~18!# in
the evaluation of the Hamiltonian matrix in Eq.~17!. Be-
sides, due to the use of many bands, our wave vectork is
restricted to reside inside the BZ. Thus, unlike the standard
k�p model, our Hamiltonian equation cannot be formally
changed to a differential equation.

Practically, we include many-band~15 for GaAs/AlAs!
rather than four-band coupling and a bulk band structure that
is accurate over theentire BZ. As a result, we are able to
reproduce the energetic features of short period superlattices
~Figs. 12 and 13! missed by the standard model.16

B. Comparison with direct plane wave diagonalization

In the direct plane-wave diagonalization@Eqs. ~2! and
~3!#, the basis functions are classified according to momen-
tum alone, not band index, so there is no intuitive way to
select the variationally most important states. Instead, one
has to increase systematically the basis size. In contrast, in
the u0 representation, and more so in theuk representation,
one can preselect basis functions on the basis of their likely
coupling in the nanostructure band edge states. This is de-
cided based on the proximity of the energy of a given bulk
basis function to the band edges.

We have recently developed the ‘‘folded spectrum
method’’ ~FSM! ~Ref. 14! to efficiently solve for the band-
gap edge states of nanostructures. The FSM provides exact
solutions of the plane-wave diagonalization, so the FSM so-
lutions are superior to the currentk�p approach~if the cur-
rent k�p Hamiltonian is developed from the plane-wave
pseudopotential Hamiltonian!. The problem with the FSM is
that when the system is much larger than a few thousand

FIG. 15. Reduced bandk�p GaAs/AlAs ~001! superlattice
conduction-band energy levels~dashed lines and pluses! compared
with the all bandk�p results~solid lines and squares!. The one-band
calculation in~c! uses the fifth GaAs state fork points close toG
and the fifth AlAs state fork points close toX.
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33S. Froyen~unpublished!.
34To save memory, in the evaluation of Eq.~41!, HA

tot(p8k8,pk)
was not stored for all (p8k8,pk). Rather,HA

tot(p8k8,pk) can be
calculated for eachk8 at a time; thus it does not need a large

memory to store it.
35K.A. Mader and A. Zunger, Phys. Rev. B51, 10 462~1995!.
36K.A. Mader, L.W. Wang, and A. Zunger, J. Appl. Phys.78, 6639

~1995!.
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