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Ni—Au: A testing ground for theories of phase stability
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Abstract

The theory of phase stability in the Ni-Au alloy system is a popular topic due to the large size mismatch between Ni and
Au, which makes the effects of atomic relaxation critical and also to the fact that Ni—Au exhibits a phase separation
tendency at low temperatures but measurements at high-temperature show an ordermg type short-range order We have
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‘state-of-the-art’ statrstrcs (k-space cluster expansion with Monte Carlo srmulauons) for the Ni—-Au system We find: (i)
LDA provrdes accurate mixing energies of disordered Ni,_ Au, alloys (AH,;, < + 100 meV /atom) provided that both
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entropy of mixing combined with calculated values of the configurational entropy demonstrate that the non-configurational
entropy in Ni—Au is large and leads to a significant reduction in miscibility gap temperature. (iv) The calculated short-range
order agrees well with measurements and both predict ordering in the disordered phase. (v) Consequently, using inverse
Monte Carlo to extract interaction energies from the measured/calculated short-range order in Ni-Au would result in
interactions which would produce ordering-type mixing energies, in contradiction with both experimental measurements and
precise LDA calculations.

1. Introduction tion tendency at low temperatures and positive mix-

The Ni—Au allov svstem is nhvsicallv interestino ing enthalpies [1] and on the other hand exhibits at
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show a peak at I'.' Also, the fcc Ni and Au
constituents possess a large lattice mismatch (Aa/a
~ 15%), thus making this system a critical test for
any alloy phase stability theory hopmg to capture the
g ornas

to ag. In Ref. [8], it is demonstrated that SRO is
determmed by the constant-volume energy change
Ae, which is negative (ordering, or ‘anti-ferromag-
netic’) in Ni-Au, indicating an ordering tendency of
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mema] and theoretlcal work on this alloy mcludes
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separatlon (at low T) with short- -range ordermg (at

making AH > 0. And, since long-range order is
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leads to two unexpected conclusions: first, that the
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nalvely construed to imp _ly a chanoe from repulswe
(‘ferromagnetic’) interactions at low T to attractive
(‘anti-ferromagnetic’) interactions at higher 7. The
change would have been surprising, given that no
electronic, magnetic, or structural change is observed
in this temperature range. The answer to this puzzie
was given by Lu and Zunge [8]: The excess energy
for a disordered Ni,_ ,Au, alloy or an ordered com-
pound with configuration of type o is given by:

AH = Ea(agq) - [(1 - X)Em(al;]i) +XEAu(a?qu)] ’
(H

and may be written [9] AH = Ae+ AE,,, where
Ae is the constant-volume, ‘spin-flip’ energy re-
quired to create the configuration o out of Ni and
Au, each already prepared at the alloy lattice con-
stant ag, and AEyp is the volume deformation
energy required to hydrostatically deform Ni and Au
from their respective lattice parameters a ' and a
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a short-range clustering tendency along the (100) direction. Al-
though our calculations agree with these observations, therc ap-
pears to bc a semantic problem of how to characterize these facts.
iv cap]l_fille mecowed dotn wan nla

(NPT

owley parameters In real-space show strong negative
(ordering-type) values in many shells orher than second neighbor,
indicating that the clustering tendency in the second shell is
competing with an ordering tendency in many other shells. (2)
The total SRO pattem in reciprocal space (including 20 real-space
shells) shows peaks away from the I-point, the typical wavevec-
tor for clustering-type tendencies.

modynamics which includes only ‘spin-flip” energies
of the Ae type, but ignores the elastic energy G(x)
will fail to explain basic stability trends for systems
such as Ni~Au. Second, since measurements or cal-
culations of the SRO are insensitive to physical
effects (i.e. elastic deformation A Ey) that control

measurements /calculations of mixing enthalpies
A H, the often-used practice (see e.g. Ref. [10—-13] of
‘inverting’ the SRO profile to extract interaction
energies that are then used to predict mixing en-
thalpies 1s fundamentally flawed. Specifically, inver-
sion of the SRO of Ni—Au will produce ordering-like
interaction energies which, when used to calculate
mixing enthalpies, will produce (ordering-like) nega-
tive values, while the measured ones are strongly
positive [1,14].

For these and other reasons, theoretical investiga-
tions of phase stability in Ni—-Au have recently be-
come quite popular [8,15-22] (Table 1). These calcu-
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ergy calculations (T=0 K) for this system have
been performed by a wide variety of techniques:
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in the computed energetics (Table 1). Statistics have
been applied to these calculations using cluster ex-
i 9], Connolly-Williams

First,

we would like to clarify the Conﬂlctmo
energetic and statistical results (Table 1) by comput-

ing ‘state-of-the-art’ energetics for Ni—Au alloys
(full-potential LAPW total energies including full
atomic relaxation) combined with ‘state-of-the-art’
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Summary of energy calculations performed for Ni, _  Au, alloys. Shown are the methods used to compute 7 = O energetics, as well as the
type of cluster expansion (CE) and statistics used. Also given is the mixing energy of the 7 - random alloy near x=1/2 and the
calculated miscibility gap temperature, if available. FLAPW = full polennal linearized auomented plane wave me(hod FLMTO = fu]l-
eptial Jinear muffin-tin orbital me ? 2 O-

SOE = second-order expansion

Authors T = 0 energy Method Results
cluster expansion technique ~ statistics ~ AHC  Tyg (K)
Wolverton and Zunger*  FLAPW k-space CE MC +118
Luand Zunger® FLAPW G MC +127
Deutsch and Pasturel ©  FLMTO e-G none +136
Takizawa, Terakura, and Mohri ¢ ASW cwW CVM +170
Amador and Bozzolo® LMTO-ASA cw CVM + 150
Colinetetal. Y LMTO-ASA -G CVM +67 1200-1400
Morgan and de Fontaine ®  LMTO-ASA + ‘Elastic Springs’ &G CVM +98 2330
Eymery et al. h empir. potential simulation none +60
Tetot and Finel ' empir. potential simulation MC +48™ 950
Deutsch and Pasturel C empir. potential simulation none +83
Asta and Foiles’ EAM SOE MC/MF +78 2460
Expt. (calorimetry) T = 1150 K +76
Expt. (EMF) T = 1173 K +77
Expt. (phase diagram) 1083

better agreement with experimental AH obtained by
approximated methods (e.g. empirical and semi-em-

pirical potentials, as well as atomic-sphere-ap-
proximation methods) relative to full LDA methods
is fundamental or accidental.

Second, we would like to address the issue of
why the calculated miscibility gap temperatures are

see a fixed ratio between calculated miscibility gap
temperatures 7,,; and the calculated AH,;,. In fact,
all previous calculations (except the EAM calcula-
tions of Asta and F01les [20D very nearly follow the

2. Checking ordered compound formation ener-
gies

Table 1 summarizes the results of previous calcu-
lations on the mixing enthalpies of random Ni-Au
alloys. The wide discrepancy between calculated val-

alloys can be expressed (see e.g. Eq. 3b in Ret. [26])
as a linear combination of formation enthalpies
A H (o) of certain ordered compounds {c}, the dis-
crepanc1es in AH_,,

must reflect dlscrepanc:les in

2t
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_ tropv: kuTue /JAH - =2 H rdered compaunds can be computed accuratelvand

ever. the experimen-

ing phase stability in alloys. We will offer a chal- Ni-Au.
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Table 2

Structure Fully relaxed FLAPW °  Partially FLMTO® ASW® LMTO® Empirical potential © EAM’
relaxed
FLAPW "
e (11 ) HcIIM\n.j\ 'ﬂég -Ln_a_f_»ncn

NiAu (L1,) +166.8 (+192.3) +167.6  +175.4
NiAu (‘40")  +84.8(+93.3) +83.8 +89.9
Ni;Au(Ll,) +775 +75.5 +80.7
Ni;Au(D0,,) +75.0(+75.0) +81.5

(+177.9) +72.9(+159.7)
(+114.3) - 1.9(+96.49
+42  +92.4 +58.1 +77.1
(+95.3)
R
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o

? Present results. Complete atomic relaxation via quantum mechanical forces and total-energy minimization.
® Ref. {8]. Partial atomic relaxation via continuum elasticity, using Egs. (2)-(6).

¢ Ref. [15].

" Ref. [18]. LMTO-ASA with sphere radii chosen to minimize charge transfer.
I Ref. [20].
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LMTO-ASA [18] calculations, one can see signifi-
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ory can be used as a relaxation model by realizing
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cies, even when considering unrelaxed configura-
tions. For example, the Z2 structure (a Ni, Au, (001)
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one. Thus, the ASA-based calculations (LMTO,
ASW) in the Ni—Au system cannot be relied upon
for the kind of quantitative energetics required in

1
phase stability studies (for a list of many cases in
which ASA  ang fu”-pofenflal TOTMAtIoN. energics T —

significantly disagree see Table 1 in Ref. [27)).
2.2. Harmonic versus anharmonic relaxation

In a large lattice-mismatched system like Ni—-Au,
the effects of atomic relaxation are likely to be
crucial. Although straightforward, fully relaxing all
of the cell-internal and cell-external degrees of free-
dom can be computer intensive. One alternative to
full atomic relaxation (using quantum mechanical
forces and total energy mmlmnzatlon) Wthh hd%

re_ar a_lal- . 1

scribed as ‘superlattices’ along some special orienta-
tions k. Continuum elasticity then provides the equi-
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due to the external constraint:

(ko ay=a) +[2-3¢W(a, . k [a(“—a ]

o AEG (e B)
q(aLJ\)— AE,(a,)

where E{ and al}) are the equilibrium energy and

(¢
lattice constam of tile cubic material A. A EZL is the
energy of the alloy constituent subject to he biaxial
constraint that the lattice constant perpendicular to k
be externally fixed at a . AE,,(a ) is simply the
deformation energy change upon hydrostatically dis-

torting the material from a, to a,. The central

i
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reduction factor’ q(a 1 k) In continuum elasticity
theories, g(a | , k) is given by

- ],\h_ﬂ_] _}_LI/‘ 7-!.1.._ ‘J.)AJ (&

of Eq. (4) (‘partially relaxed’ in Table 2), we find a
lower-energy relaxation for Z2: The LDA energy
minimization gives AH(Z2)= +70.2 meV /atom

A=Cy—(C,,-Cy)/2 (5)

is the elastic anisotropy, B = (C,, +2C,)/3 is the
bulk modulus and C;; are elastic constants. In the
ﬁﬂ%mﬁ"ﬁh—v
sumed to be a, -independent “and Yo ) is the
following geometric function for the direction k=,
m, n):

Yharm(l’ m, n)
4 Pm? +mPn® +n?l?)

] Bl a2

where K, are the Kubic harmonics of angular mo-
mentum L.

Using Egs. (2)-(6) thus provides predicted re-
laxed geometries c.(k, a,) for alloy compounds
(e.g. the 22 structure% given the elastic constants and
a{y). Indeed, these equations have been routinely
used (see review in Ref. [29]) to predict the distor-
tion ¢, — a,q of films grown epitaxially on a sub-
strate with lateral lattice constant a , . Comparison to
LDA calculations [30] shows that for semiconductors
with lattice mismatch (a,, —a,)/a, < 7%, the har-
monic expressions (Egs. (4)—(6)) work very well
down to a monolayer thickness. However, we find

7 S | 1

theless, anharmonic relaxation in Ni-Au alloys is
large and cannot be neglected.

2.3. Empirical methods: Getting the right AH, , (x,

%’W

le

We see from Table 1 that the methods that use
empirical evaluations of AH,, (1/2, ) [15,18,20—
22] produce results that are lower and thus closer to
the measured A H,;, (1/2, 1150) than methods that

use converged, full potential, fully relaxed ap-
nroachee (i e the nrecant worlk and Refe R 18T

such systems. lndeed, 'lable 2 shows the formation
energies of two of the empirical potential methods.
By comparing these numbers to full-potential LDA
energies, one can see that the empirical potentials
systematically underestimate the formation energies
of ordered compounds. Since the LDA method is
expected to reproduce formation enthalpies of
small-unit-cell ordered structures rather accurately
and since FLAPW gives a precise representation of
the LDA, we think that the underestimation of
FLAPW energies by the empirical methods is a
rather serious limitation of these methods. The EAM
of Ref. [20] was fit to the unrelaxed FLAPW calcula-
tions of Ref. [8] and thus reproduces these energies

of Eq. (4) now has additional terms to those appear-

= i S A T

able to see more formation energies of ordered com-
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"THOTIIC 1erms 1N yLX) lead via Lq. (&) 1O COITeclons
to g(a,, k) and consequently via Eq. (2) to the
re]axatlon of the lattice_constant c, (k) Indeed us-

)y g vy — o~ FAl g

—

-t a the harmonic exnressi
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expectation of underestimation of AH (o) relative 3. Present calculations: FLAPW with k-space
to LDA. cluster expansion

In summary, the reason that empirical methods

ee_Wi d random-allq 1xjne_enthalny 31 FIAPW calculations of ordered compounds

mation by the empirical methods of even the ordered

We have performed first-principles full-potential

ol CULAAT i e Lijm

4

Table 3
Listing of the LAPW calculated unrelaxed and relaxed A H(o ) (in meV /atom) for Ni,_ ,Au . Many of the structures calculated here can

S ¥ ) b i e ]
] s T T R ——

AB L, L1, Li, L1, L1,
Unrelaxed +98.1 +98.1 +98.1 +192.3 +192.3
Relaxed +76.1 +76.1 +76.1 +166.8 +166.8
CE (relaxed) +74.8 +74.8 +74.8 +167.1 +167.1
A,B Bl y1 al
Unrelaxed +207.8 +123.3 +288.5
Relaxed +105.7 +98.9 +202.2
CE (relaxed) 4+ 105.9 4+ 102.4 + 208 4

¢ = o
Relaxed +38.3 +102.6 +100.9
CE (relaxed) +37.8 +98.8 +94.5
A.B Zi Yl DO, vl wi
Unrelaxed +221.7 +148.5 +75.0 +290.8
Relaxed +89.9 +99.2 +75.0 +193.7 + 1257
Al gl _ w0 ———

Unrelaxed +1420 +104.1 +68.7 +172.8

Relaxed +32.4 +78.7 +68.6 +83.0 +88.4
CE (relaxed) +28.2 +77.7 +67.6 +79.1 +83.2
A,B, 22 Y2 40’ V2 w2
Unrelaxed +286.7 +192.3 +93.5 +335.8 +144.2
Relaxed +70.2 +96.6 +84.8 +162.4 +93.6
CE (relaxed) +69.9 +101.1 +88.3 +166.7 +993
A,B,(p—ox)

— L5267 DL — R R kL I ——
CE (retaxed) +30.8 +116.1 +86.8 +172.5 +117.9
Other structures

L1, (A;B) L1, (ABy) D7 (A,B) D7, (A,B)
Unrelaxed +77.5 +78.9 +82.9 56.8
Relaxed +77.5 +78.9 +82.9 56.8
CE (relaxed) +80.7 +78.6 +98.5 57.6
SQS14,(A¢B,) SQS14,(A,Bg)  Z6(AB;—100) Z5(A,B;—100)
Unrelaxed +183.2 +118.2 +355.5 +2733
Relaxed +96.8 +59.8 +63.2 +57.1

CE (relaxed) +81.5 +75.0 +62.5 +57.9




C. Wolverton, A. Zunger / Computational Materials Science 8 (1997) 107-121 113

large number (31) of fcc-based Ni~Au compounds in
order to construct an accurate cluster expansion. The
total energy of each compound is fully minimized

ala = Py 1 11 e 1 1 11

— '

L T

We also calculated the energies of six other struc-
tures: L1,(Ni;Au and NiAu,), D7(Ni,Au and
NiAu,) and two 8-atom ‘special quasi-random struc-

.

¥ 11

We have used the exchange correlation of Wigner
[33]. The muffin-tin radii are chosen to be 2.2 a.u.
for Ni and 2.4 au. for Au. Brillouin-zone integra-
tions are performed using the equivalent k-point

g — ) needed in the construction of the k-space
cluster expansion (see below) were computed for six
principal directions: [100], [011], [201], [111], [311]
and [221]. The numerical error of the LAPW calcula-

comiedie s met ol [Dal) itk ‘o Foginiomica 05 ch——tisas sh dalle=ic 33 areted tasb lCmamvlatea-ar

compound all mapping into the same 60 special
k-points for the fcc structure. This mapping guaran-
tees that the total energy per atom of an elemental
metal calculated either with the fcc unit cell or with
a lower symmetry (c.g. any of the compounds) are
identical. All calculations performed are non-mag-

less.

3.2. k-space cluster expansion

The Ni-Au formation energies AH_ for struc-
tures o are then mapped onto a cluster expansion
sing the k-space formulation Taks ef al [31

and found to be —50 meV /atom.)
The 31 calculated LAPW formation energies are
given in Table 3. Both relaxed and unrelaxed (total

1.
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at ideal fcc positions) formation energies are shown.
The nomenclature of the compounds studied is the
same as given in Ref. [26]. Many of the compounds
considered can be described as Ni,Au, ‘super-
lattices’ along a particular orientation &:

Ni, Au,: [100], [111],

R s A S A i B2 Sahdl RN S £ S R4
Ni, Au,: [100], [011], [201], [111], [311],
NijAu;: [100],

Froern .

\;Ayauu wiul ICDVULL W alilvliCiCliLe l:uclsy.

AECE(U) =AHLDA(U) —Eref (8)

: (i) the erm%

aration will be conveniently summed using the recip-
rocal space concentration-wave formalism and (ii) all
terms but the pairs will be cast in real-space:

AE (o) = Y J(k)IS(k, o)I* + };DfJfﬁf(a)

)

We will separate the CE into two

real-space pair interactions and spin-occupation vari-
ables, J;; and S, respectively, and the spin-occupa-

tion variables take the value .S’i = —1(+1), denoting

? Generally, it was found that relaxing the cell-internal degrees

—_ 1 - : 1. 11

T — e ey
J

integral of the gradient of J(k). The real-space

summation of Eq. (9) is over f, the symmetry-dis-

tinct non-pair figures (points, triplets, etc.), D, is the

oo -

—rroe - - o -

variation of the angle of the unit cell vectors was neglected.

—'

sites.
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The reference energy of Eq. (8) is chosen to

infinita scmae xool cnooa + 41

The following input is needed to construct this

n £, ~

- 1

ol

dicular to k. AEZ(k, x) can thus be written as the
minimum of the following expression with respect to
a

3.3. Anharmonic calculation of constituent strain

L Laks et al. [25] demonstrated that the calculation
AEE%(;}’ x)=(1-x)q(a, ,k)AEY (a,) Qf AES(k, x) of Eq. (11) is significantly simplified
u . . if one uses harmonic continuum elasticity theory (i.e.

+xq (a_L , k)AEbulk(aL) insert Egs. (4)-(6) into Eq. (11)). However, we have

already seen evidence of anharmonic elastic effects
in Ni—Au. Thus, we have performed LDA calcula-
tions of g(a , , k) directly from its definition in Eg.
(2), rather than using the harmonic approximation in
Eq. (6). In Fig. 1, we show the results of the LAPW
calculations of ¢“'(a, , k) and ¢*(a %) for six
principal directions: (100), (111), (110), (201), (311)
and (221). It is clear that the calculated values of ¢
are not independent of a , , but rather show a marked

(11)

where ¢ (a , k) is given by Eq. (2).
The final expression used for the formation en-
ergy of any configuration ¢ is then

AH(o) = LJ(k)S(k, o)I* + XD, J I (o)
k f

eq( b 2
+m %AEC%(I(, x)lS(k, (T)‘

(J2} ~
= —_ i ——____ L e
e — N D
D.
kDA (Ra)) ap” (ka,)
0.5 e 175 0.3
// 221
.é_:u_u |
I
== :
20 T1U '
03[311 ERRIS 221
- =2
& £ 0.15 [ 221 311
100
o2l 3 100
0.1 [.—110 ]
1
01F . 005, 1 ]
agq(N) 100 lae (N} g q(AU)
ad *4 P eq L 1 1 q i L. - . - . 1 v A

64 66 68 70 72 74 76 78 80

a; (a.u.)

64 66 68 7.0 72 74 76 78 80

a; (a.u.)

Fig. 1. LAPW calculations of ¢ (a |, k) of Eq. (2) for Ni-Au. Shown are (a) ¢™' and (b) ¢*" for six principle directions.
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value of gN'(a  , 100) is quite low upon expansion,
indicating that Ni is elastically extremely soft in this
direction. Au, on the other hand, becomes softest in
the (201) direction for significant compression. In a
separate publication [36], we will demonstrate that
the anharmonic effects can be cast analytically in
terms of the harmonic expressions of Eq. (4) by
extending the expansion of y(k):

20 +

J(R;) (meViatom)
o

-20 + J

Lo L Ll L ) ¢

() = Delu,) &) (19)
L
to include angular momenta L = 6, 8 and 10 with the
coefficients a;(a, ) obtained from LDA calculations
rather than the L =0, 4 expression of Eq. (6) used
before [25].
T
used to numerically minimize k£q. (11} and hence to
find A E&(k, x). The results for the CS energies are

H 2 wi o

0 0.5 1 1.5 2 25 3 3.5 4
Rij/a

T
[Ni-Au Multibody Interactions |  (P) |

3-body 4-body

20 b

)

0 3 4 |
Ky Ny Py Qg g Ky

Jf (meV/

shown in Fig, 2. Here. algp. the anharmonic effects

s

tries of the various directions are not all the same
(effects which could not occur in the harmonic

RN ~ ~ a man R N
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(10D), K4; (110), (200), N,; (200), (002), Py; (110), (103), Q,;
(110), (220), J,; (110), (101), (011), K ,; (110), (101), (200) and
Ly, (110), (101), (211).

direction. Ni being soft and Au being relatively hard
along (100) leads to Ni(Au) being highly distorted

(mevn]w)

100 - .,,' / Y10 __\_;\'- 2 For E; to be useful in the k-space CE, one must
zq s _-~301 3 be able to know this energy for all directions, not
g ," e ,,’ \“.,_ merely the ones for which it was calculated. To

50 -.,-‘ ~< 100 \’5‘} 1 obtain such a useful form, we fit the constituent

Ly N strain results of Fig. 2 to a series of Kubic harmonics
e (0-10th order) consistent with cubic symmetry (L =
%o oz oa os - 10 0, 4, 6, 8, 10). This procedure provides not only a
Ni x Au good fit of the calculated strain data, but also an

Fig. 2. LAPW calculations of A Eqs(k, x) for Ni-Au for six

principle directions.

analytic form to obtain the values of A ES(k, x) for
all directions.
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(meV/atom)
15
T D—r T

-
o

: Standard Deviat

-
-
v
T
L ¢

Number of pair interactions, Npalrs

Fig. 4. Cluster expansion fitting error in Ni- Au versus the number
of pair interactions included in the fit.

3.4. Stability of the cluster expansion

Using the calculated formation energies {AH_}
(Table 3) and the anharmomc CS strain energy (Fig.

e

standard deviation of the fitted energies relative to
their LAPW values is 5.3 meV /atom, which is the
same order of magnitude as the numerical uncertain-
ties in LAPW. The results for pair and multibody
interactions are shown in Fig. 3.

In order for the expansion to have a useful predic-
tive capability, tests must be performed to assess the
stability of the fit.

3.4.1. Changing the number of interactions
We performed tests of the stability of the fit with

respect to the number of pair 1nteract10ns NPalrs =

- o

/1 Fad's . S =14 A L - 1 b N
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3.4.2. Changing the number of structures
We also performed tests of the predictive ability
of the fit by removing some structures from the fit.
First, we removed three structures which were origi-
L it i Ll N 1 e
moving these structures from the input set resulted in
their energies changing by < 1 meV/atom. How-
ever, a much more critical test of the fit is to remove
the structures which are fit most poorly: SQS14, and
FOLLA  Neoordes dager 00017 Pl (el Cof ! e—

fit is both stable and predictive.
4. Results of current calculations

4.1. Mixing enthalpy: How good are previous calcu-
lations?

enthalpy as a function of temperature, AH_, (T).
Monte Carlo calculations were performed for a 16>
= 4096 atom cell, with 100 Monte Carlo steps per
site for averages. The simulation was started at an
extremely high temperature, and slowly cooled down

using a simulated annealing algorithm. Also shown

Monte Carlo aH ., (T) - Nij, sAu, 5

T T my T

120 AH_. - (x=1/2,T=eo)—— 5

mix

110

Yatom)

included. It is clear that the fit is well converged for
Npirs = 20. We also tested the stability of the fit with
respect to inclusion of more multibody interactions
than are shown in Fig. 3. Including three additional
triplet figures in the fit resulted in no change of the
standard deviation of the fit, the added interactions
had values <2 meV /atom and the original interac-
tions were changed by less than 2 meV /atom. Thus,
the fit is stable with respect to the figures included

(both pair and multibody).

<@
= 90 4 °
o o
ﬁ 80 [ ;i
= ] —e— Disordered Phase
] Coherent Phase Separation
IE 70 B
=]
60 |
50 1 1 a1 i 1
1000 1500 2000 2500 3000 3500 4000
T (K)

Fig. 5. AH(T) computed for NiysAu, s from a combination of
the k-space cluster expansion and Monte Carlo simulations.



completely random alloy. The difference between the
Monte Carlo calculated AH,, (T) and the random

miy

AH_, (T) to linear and quadratic functions of 8=

mix
1/kxT to extrapolate the values down in tempera-

tnra halawr tha nAaint at tthinh ~rharant nhaca cannen

adjusted accordingly.
(iii) In light of the fact that the empirical poten-

full-potential LDA methods for unrelaxed, ordered
compounds (Table 2), the results of relaxed, mixing

PP PN (SNSRI TR § SRR | PO DS S S

where this quantity has been experimentally mea-
sured. These results are tabulated in Table 4, which
shows both the effects of atomic relaxation (~ 100
meV /atom) and SRO (~ 25 meV/atom) on the
mixing enthalpy and compares the value of atomi-
cally relaxed and short-range ordered mixing energy
with those values from experiment. One can see that
by taking into account both relaxation and SRO,
LDA produces a value for the m1x1ng energy Wthh

1 oe ~ 1« AN

B Dt B e N L T T e

for the Ni—Au system.

The preceding discussion leads to a number of
conclusions regarding previous calculations of
AH

le

(i) Since relaxation reduces AH,;

by ~ 100
values. (‘d’ i

e

measured values of total entropy of mixing: Calon-

one can find the configurational entropy of the
NiysAu, s disordered phase by integrating the en-
ergy down from infinite temperature (where the con-
figurational entropy is known):

AS(T) = AS(T =) +E(T) /T~ ky [*E(B) dp
0
(14)

The configurational entropy obtained from thermo-

Axvmaminr intaoratinan in thic wavw ic

VULMPGILVG W LY UL GL WML WPV ALY/ Y AU

of
ASconf(NiO.SAuO.S’ T— oo) = O69kB’ (16)

This calculated value for the configurational entropy
of mixing can be compared with the experimentally

o S

meV /atom, the results of previous calculations that

Table 4
AH,;, for NigsAu,,. All energies in meV /atom. SQS-4 refers

to a 4-atom special quasi-random structure (¥ 2). This table shows

Tr—rron—coTgTEraTToTIT
Iarge AS,oncont{T ~ 1100 K) = 1.04 — 0.56 =
0.48ky. This non-configurational entropy is hence
responsible for T,; being so small experimentally,
compared to all the theoretical results. In fact, if we
use the calculated AH_,, = 93 meV /atom and the

combined ‘experimental/calculated” AS,

_ the effects of relaxation (first line minus second line) and short- Pl o it ! . non-conf ™ .
SQS5-4 unrelaxed (T =) +192 ~B ' ““*“non-conf
S e . Cam . — ’ .
- A —
) CE relaxed (T = 1100 K) +93 SRR AN LY Mpiiaasases TSSS MG svvY |
Expt. (calorimetry) T = 1150 K 76 K and k TMG/A ix = 1.2) than using the above

c.z‘ﬂ.ﬁm (r :
~2150 K and kpTye/AH,,, = 2.0).
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From this consideration of non-configurational ef-
fects, one should conclude that the accuracy of a
calculation with configurational degrees of freedom
only (as is done in most of the previous
calculations *), should be determined by looking at

at (0.65, 0, 0), (0.40, 0, 0) and (0.38, 0, 0) respec-
tively, in good agreement with both the measure-
ments of Wu and Cohen (kgzo = (0.6, 0, 0) for 25
shells) and also with previous calculations.

Eq. (12) shows that the alloy Hamiltonian used in

= : < L ase o g : A .
) ————
C PCT ALULCT Uy U PIC ClY DCUAdUSNC =i AdvT Uall d U C 5 dlilil C U Sle d C
energetics. interesting to see the effect of each of these portlons

4.3. Short-range order of Ni,_ . Au . solid solutions

[0 S SUD—" § 1 AT 1 2 F . 4L Tt T A

of the alloy Hamiltonian on SRO. Thus, in addition
to the ‘full’ calculations, which contain pairs, multi-
bodles and constituent strain in the alloy Hamilto-

e ]

wpreees s aabBorro s saseees J m umsaea wUsssavasiino sas

atoms was used. with 100 Monte Carlo steps for
%p

quent 500 steps. Several calculations and measure-
ments of the SRO exist in the literature: Wu and
Cohen [2] used diffuse X-ray scattering to deduce the
atomic SRO of Ni, ,Au,, at T= 1023 K. The mea-
sured diffuse intensity due to SRO must be separated
from all the other contributions which give rise to
diffuse intensity and for this purpose Wu and Cohen
used 25 real-space Fourier shells of SRO parameters,
and found the rather surprising result that the peak
intensity in reciprocal space due to SRO is of order-
ing-type and occurs at the point kgzn = (0.6, 0, 0),
rather than k... =(0 0 0) which wonld he ex-

Lu and Zunger [8] calculated the SRO (usmg 21
(Vs

sl g

required o converge the_.SRCLof CS alone: thus we
- [ - 1 - . - e
Yy b/

Fig. 7.) One can see that the SRO with CS only is
dominated by almost constant streaks of intensity
along the I'— X line and very little intensity else-
where. This SRO pattern is understandable when one
considers that the constituent strain at this composi-
tion (Fig. 2) is much softer (much lower in energy)
in the {100) direction than along any other direction.
Thus, (100)-type fluctuations in the random alloy are
energetically favored, and because the constituent
strain is dependent only on direction and not on the

length of the wavevector, one should expect that all
fluctnatione alono the (100 directinne will acenr

Contrasnng this SRO using CS only with that calcu-

Whercas Asia and rolles 1Z20] used an cmoedded
atom method and found the SRO (using 8 real-space

the SRO of Niy ,Au,, are given in Fig. 6. We have
k 11 Fal =Y — -

T T—

o TataRotih 4 ]

not mumbody mieractions) shows that the paxr mter-
actions create a peak in intensity along the I'—

tholo) te pealcat » (0.5, 0, 0). Qui=colexlatione for— Ena, but significantholeger—io T—tha-n—thejge“‘(_

1ntens1ty usmg the “full’ alloy Hamiltonian. Thus

bility gap temperature for our alloy Hamiltonian. We
find that, using 8, 25 and 100 shells, the SRO peaks

“Some of the previous calculations (f, i, j of Table 1)
estimated the effects of vibrations on the phase diagram, either
using a simple Debye model ( f) with LDA bulk modulus calcula-
tions or continuous-space Monte Carlo simulations (7, j) using the
elastic response of an empirical potential.

I' point, the multibody interactions move this peak
out from [I' towards the X-point.

4.4. Standard inverse Monte Carlo would give un-
physical interaction energies: A challenge

The statistical problem we have solved here in-
volves the calculation of the alloy SRO at high
temperature for given alloy Hamiltonian ({J, }, {/,}

— :
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Short-Range Order: Nig 4Aug ¢, T=2300K
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Fig. 6. Monte Carlo-calculated short-range order of Nig ;Aug ¢ in the (#k0) plane using (a) 8, (b) 25 and (c) 100 shells of Warren Cowley
SRO parameters. The peak intensity is the red shaded contour while the lowest contours are shaded blue. Contours are separated by 0.1 Laue
unit in each plot.
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and AE¢). However, a popular technique used to
study phase stability in alloys involves the ‘inverse’
problem of determining a set of pair-only interac-
tions {J: j} from a measured or calculated SRO pat-

AC36-83CH10093. The authors would like to thank
Dr. M. Asta for providing the EAM values in Table
2 and Mr. D. Morgan for communicating his results
to us prior to publication.

to determine thermodynamic properties other than

Adoe OOV Vo Lone 7 N ol oo ol i A s

_
AW 5 SUrmE)| HuaSE STACTIT S We pde

ay =o

(=]

ms that are SR

7

vents, in principle, the interactions deduced from
SRO from being applied to predict physical proper-
ties which depend on G(x), such as AH,;, . For
example, in the case of Ni—Au, the SRO is of
ordering type. Thus, we expect that inverting the
SRO of Ni—Au (e.g. via inverse Monte Carlo) would
produce interactions {f,- j} which are of ordering type
and using these interactions to predict the mixing
enthalpy would result in the unphysical result A H,
<0.

goaie b oot thed ganngir o dh

mix
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OIw, Ol DU L0 =
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derina tn rluctor:

correctly give AH_. > 0. However, we have com-
puted the SRO for several temperatures, and find no
evidence of a shift in SRO to clustering type.

A test of our expectations by any of the practi-
tioners of inverse Monte Carlo would certainly be
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