


separation is large enough to remove any dot-dot interac-
tions. However, in the systems studied here, the large barrier
sizes create such a high GaP:InP ratio~;30:1! that any ex-
ternal relaxation would be minimal in any case. The resulting
strain exhibits nontrivial hydrostatic and biaxial components.
Our quantum-mechanical calculation of the energy levels of
the dot ~see below! will include the effect of such a strain
profile. However, in order to understand these results, we
first consider a simpler case, namely we calculate the band-
edge states ofbulk InP andbulk GaP subject to the local
strain e(R) experienced by the GaP-embedded InP dot at
positionR. To do this we discretize the GaP/InP nanostruc-
ture into ‘‘cells’’ with position vectorR and then perform
;40 bulk band-structure calculations of InP and GaP, using
the empirical pseudopotential method,11 thus obtaining the
bulk eigenvaluesEnk@e(R)# for band n at wave vectork
within each cell. Each bulk calculationEnk@e(R)# uses the
In-P or Ga-P bond geometry within that cell. The resulting
strain-modified band-edge states are shown in Fig. 1~b!.
Compared with the unstrained offsets@Fig. 1~a!#, we see that

the GaPX1c band edge that is flat in the absence of strain
@Fig. 1~a!# is now transformed into an attractive trough@in-
dicated by* in Fig. 1~b!#, capable of localizing electrons.
The formation of this trough is initially surprising as the
deformation potential at theX1c point is negative and one
might therefore expect the hydrostatic expansion of the GaP
at the interface with the InP dot to drive theX1c state up in
energy. However, the above bulk calculations show that it is
the biaxial strain present at this interface which is the domi-
nant term, and this is capable of forming the electron
troughs. Theatomisticstrain has therefore profoundly modi-
fied the nature of the confined electron states from delocal-
ized to localized. It is important to emphasize that
conventional12 calculations of strain-modified conduction-
band offsets include only the hydrostatic~no biaxial! term
and only theG1c ~no X1c) conduction band, and would there-
fore miss the important changes in the conduction-band
edges between Figs. 1~a! and 1~b!, which our calculations
show are due to the effect of biaxial deformation on theX1c
state.

Results of calculations on dots. To calculate the energy
levels of GaP-embedded InP dots, we again place an InP dot
of radiusR, surrounded by sufficiently thick GaP barrier in a
‘‘supercell,’’ repeated periodically to create a lattice of dots.
Having created~artificial! translational periodicity, band the-
oretical models can then be applied to study the electronic
properties. The limit of an isolated dot is achieved by in-
creasing the thickness of the GaP barrier. The calculations
for both the bulk bands and the quantum dot levels are based
on the atomistic Hamiltonian
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The total potential is constructed from screened atomic
pseudopotentials,ya , wherea represents Ga, In, and P, and
Ran are the relaxed atomic positions. The pseudopotentials
ya have been fitted9 to the experimental band gaps, deforma-
tion potentials, and effective masses. We use the analytic
form of the pseudopotential described in Ref. 9, which was
designed to build in the effects of strain experienced by each
atom in lattice mismatched systems.

The supercells studied in this paper contain up to one
million atoms, which is too large for the Hamiltonian in Eq.
~1! to be solved by direct diagonalization. We thus use the
folded spectrum method13,14 ~FSM!, in which one solves for
the eigenstates of the equation

~Ĥ2e ref!
2c i5~e2e ref!

2c i , ~2!

wheree ref is a reference energy, and the wave functionsc i
are expanded in a plane-wave basis. By placinge ref within
the gap, and close to the valence-band maximum or
conduction-band minimum~CBM!, one is then able to obtain
the top few valence states or the bottom few conduction
states, respectively. Using this approach the computational
cost scales asMNln(N),whereN is the number of desired
electronic states andM is the number of plane-wave basis
functions (M’20 million in the largest system studied here!.
The simulations in this paper were performed using a parallel
code on the Cray T3E900 on up to 256 processors where the

FIG. 1. ~a! Unstrained~‘‘natural’’ ! band offsets~in eV! between
bulk GaP and InP. Solid lines indicate bulk band edges and dashed
lines indicate quantum confined levels. Arrows show the energy
change due to confinement.G-derived states are shown with thick
lines andX-derived states with thin lines.~b! Strain-modified band
edgesEnk@e(R)# are plotted along@100# through the center of the
InP dot with diameter 131 Å and dot-dot separation of 109 Å. The
lowest ~highest! conduction~valence! band is shown at each posi-
tion R. The * denotes the position at which the lowest conduction
state is localized.
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