


approach? It is thus interesting to revisit CdSe and to study
the higher energy excitonic spectra using the same atomistic
DD approach. This will examine our theoretical understanding
of the system by observing whether agreement with experiment
can be obtained without explicitly fitting to the data. This study
can also be used as a benchmark for the applicability of the
direct diagonalization pseudopotential method and for our
detailed understanding of the exciton spectroscopy in a quantum
dot.

In the following, we show that, using the direct diagonaliza-



conduction states, covering B; range of ~1.4 eV. The
resultingl(E)’s are shown in Figure 1, where the short vertical
negative bars denote the excitonic transition energigof
eq 2, while the positive bars indicate the matrix elements
|3,,|V|3,c0P for each transition.

We next identify the major transition peaks and assign indices
a—i to them (arrows in Figure 1). The assignment is done by

considering the line shapes and intensity of the transition peaks
and a consistent trend from the small to large quantum dots.
Thus, each major peak might contain a few closely spaced small
peaks. For the cases where there is no obvious peak position,
the center of mass of the major peak is used as the position of
the peak. There is some uncertainty in assigning the peak
positions, especially in the higher energy part of the spectrum,
i.e., peaks f, g, and i. Indeed, had we based our assignments
on the spectrum of a single-size dot alone in Figure 1, this
uncertainty could have been as large as the separation between
the peaks. However, we based our assignments on the observa-
tion of the development of peaks as the dot size varies.
Consequently, as can be seen in Figure 1, this uncertainty is
much reduced. Notice that we have used the full optical spectra
to assign the peaks. This is more reliable (especially for the
higher energy peaks) than assigning peak positions according
to transition energies onky.

Before comparing with experiment, we note that the experi-
mental data in Figure 4 of ref 4 contains the effect of phonon
replica, exchange splitting, and crystal field splitting, which are
not considered in our (or in the k.p) calculatidfisTo subtract
these fine-structure effects from the data, we have used the fine
structure model of ref 2. On the basis of this model, we
calculate from ré2 a new band gafgap, Which corresponds to
the lowest excitation enerdy, in the absence of the exchange
splitting and crystal field splitting. The experimental data in
Figure 4 of ref 4 is replotted in Figure 2 using this new definition
of E, (see footnote 22 for a more detailed descriptions of this
procedure). We also plotted the calculated relative peak energies
Ei — E4 (i = atoi) as a function of the effective gap, in
Figure 2a.

Overall, Figure 2 shows that the present calculation is in very
good agreement with experiment. However, not all of the
observed transition peaks are accounted for: (1) Our calculation
here is limited to dots witlEga, > 2.1 eV. Dots with smaller
band gaps correspond to dot size1000 atoms that are not
calculated here. (2) The energy of the experimental peak j is
beyond the energy range of our calculation; thus, there is no
corresponding calculated value for it. (3) The experimental peak
h is weak and very close to g. Furthermore, it is in the high-
energy range of our spectrum, where many small peaks exist.
Thus, without analyzing all these details, and without doing an
ensemble averages over the different shapes, we do not feel
confident to assign such a peak. (4) At the lakgg, value



experimental peak e than to f. Note that the direct diagonal-
ization pseudopotential results without fitting are closer to

the appearance of the crossing remain to be tested by our direct
diagonalization method in the future.

In Figure 2b, we have copied the k.p result of ref 4 to compare
with the adjuste#? experimental data. Thus, the same correction
is applied to the experimental data as they are compared to the
direct diagonalization results and the k.p results. As we can
see, the k.p transitions labeled (a), (b) and (d), which were
explicitly fitted to the raw experimental data, still agree well
with the adjuste#? experimental results. However, the k.p
energy for the other transitions are shifted away from the
experimental peaks. Notably, the k.p transition energy (e) is
too low for largeEyap, and the k.p transition (f) is closer to the



the Dirac spin matrix) applies only ton

the final half-integer is the total angular momentém We
have similarly decomposed our directly diagonalized wave
functions® y(x) into k.p-style envelope functions

whereun(X) is thenth bandbulk Bloch function at thd” point

(k = 0), fa(r) is the corresponding envelope function, afagh-

(1, ¢) is the spherical harmonics of angular momentumThe
total integrated weight oy __ | If h'm(|r|)|2 for each{n, L} is
denoted asv,.. We have used the heavy hole, light hole, and
split-off bands forn, and the total weights on these bands
> Ln=3-8 Wn is around~0.9. Figure 4 depicts the dominant
weightsw, | of each single-particle state: The capital letter

before “-” indicates those angular momeitfa whose sum of
Wy, on the heavy hole and light hole bands are larger than 0.1.
Thel’s are in descending order according to their weights. The
letter after “-” indicates the highest weight angular momentum
L for the split-off band. The last number is an averaged total
angular momentunf, calculated as

Here the angular momentum operanJr=j$
, Bind

dpoint
group symmetry. Consequently, the largest degeneracy of the
direct diagonalization state is only 2, while in k.p, the
degeneracy is (2



plot of the DD wave function DGD2.8. Its envelope function
shows orientational preferences in the (110) an@) directions.
On the other hand, the corresponding k.p state_$/2 is



