Calculated natural band offsets of all II–VI and III–V semiconductors: Chemical trends and the role of cation d orbitals Gi !<i U]'K Y]'UbX'5`YI 'Ni b[Yf' 7]hUh]cb. '5dd']YX'D\ng]\Mg'@YhHYfg'72ž&\$%%f% - , \\ \L'Xc]. '%\$"%\$*' #%'%&%&(- \\ J]Yk 'cb']bY. '\\ hnd. ##Xl "Xc]"cf[#\%\$"\%\$*' #\%'\%&\%&(- \\ J]Yk 'HUV'Y'cZ7 cb\HYbhg. '\\ hnd. ##g\\]\hUh]cb"U]d"cf[#\\ \chi\bhYbh\U]d#ci fbU'\#\d'\#\&\#\' 3j \Yf1 d\X\Z\\ \chi j \Di V`]g\\YX'Vm\\Y'5\D` Di V`]g\\]b[Articles you may be interested in by Y! VUbX cdrcY YVWfcb] WdfcdYff] Yg] bei Ubh a 'Xchghfi VM fY cZ'ck 'VUbX' [Ud'=+J 'gYa] WbXi VMcfg' ## Calculated natural band offsets of all II-VI and III-V semiconductors: Chemical trends and the role of cation *d* orbitals Su-Huai Wei^{a)} and Alex Zunger^{b)} National Renewable Energy Laboratory, Golden, Colorado 80401 ~Received 27 January 1998; accepted for publication 24 February 1998! Using first-principles all-electron band structure method, we have systematically calculated the natural band offsets DE_v between all II–VI and separately between III–V semiconductor compounds. Fundamental regularities are uncovered: for common-cation systems DE_v decreases when the cation atomic number increases, while for common-anion systems DE_v decreases when the anion atomic number increases. We find that coupling between anion p and cation d states plays a decisive role in determining the absolute position of the valence band maximum and thus the observed chemical trends. © 1998 American Institute of Physics. @S0003-6951-98!03316-6# The offset $DE_v(AX/BY)$ between the valence \sim v! band maxima of two semiconductor compounds AX and BY forming a heterostructure is one of the most important parameters in interfacial structures deciding both transport and quantum confinement. Extensive studies \sim see review in Ref. 1! have been carried out in the past to both measure and calculate DE_v of II–VI and III–V semiconductor compounds. However, most of the experimental studies concerned only a particular pair and their results are somewhat scattered. Furthermore, many of the previous theoretical calculations involved approximations \sim e.g., model solid, 2 no p-d coupling, 3 etc.! whose validity has not been verified. Thus, overall regularities and trends were not apparent. In this letter we have systematically calculated the natural band offsets DE_v via ab initio, all-electron band structure method 4 between all II–VI ~i! Most valence band offsets are nonzero. This is in contrast with the "common-anion rule" 12,13,3 that suggested that the offset between two semiconductors having the same anion will be small. The smallest $\mathrm{D}E_{v}$ occur between Zn/Cd and Ga/In common-anion systems ~Table I!. ~ ergy and higher cation d orbital energy!. Figure 2 shows schematically how the $p\!-\!d$ coupling affects the band offset: ~a! Trend ~