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correlation potentials are, respectively,

V„(n,(x))=
~ [

dr',n, (r')

5Z„,(,(~))
5n, (r)

and the density n, (r) is. related self-consistently
to the eigenvectors of Eq. (8}by

~,(~) = Q&:g
~

x'.( (&)
~

' (10)

Here ¹,denotes the valence occupation number
in the ground reference state g, and the sum is ex-
tended to include N„electrons. 'The inhomogeneous
exchange and correlation potential V„,(n, (r)) is
normally replaced by the homogeneous free-elec-
tron potential V„,(n (r)) in the usual way, ' leading
to an exchange part V„(n,(r)) [with exchange coef-
ficient a = g' (Ref. 42)] and a correlation part
V,(n, (~)) for which we adopt the results of Singwi
et al. '~ Gradient corrections '~' are possible,
but will not concern us here. Note that as the den-
sity n, (x) would be constructed to be slowly vary-
ing over space, the neglect of the higher terms in
the gradient expansion is more justified than in the
all-electron LDF approach.

One now seeks the form of the external potential
V,„,(r) such that for the reference electronic state
g, the eigenvalues of Eq. (8) will equal those of the
all-elecj, ron problem:

[--s'&' —(Z„+Z, )/r+ V„(Pg(x))

+ V„,(p, (r))]g'„,(r) = e'„,g'„, (r),
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g„,(r) is identified in Eq. (12) with a 1s orbital
[having no nodes but lacking similarity to the val-
ence state )(„,(r)]. This lea.ds to U, (r) = c„,—e„,
exactly like the Phillips-Kleinman form, ' with lit-
tle pseudopotentia. l cancellation. Clearly, this re-
sulting core potential would yield the correct val-
ence eigenvalues in Eq. (2) (simply by shifting the
1s level by an amount necessary to make it degen-
erate with the valence orbital of interest), but
would lead to very poor valence wane functions
The highly repulsive character of U, (r), l & f, for
small r and the associated degree of pseudopoten-
tial cancellation is hence a natural consequence of
the maximum similarity constraint on the pseudo-
wave-functions, which assures in turn its vari-
ational quality. Note that the repulsive nonlocal
potential U, (r) is short range under the maximum
similarity constra;int; if R, denotes a dista, nce
from the origin at which all core orbitals have al-
ready decayed to zero, it is clear from Eq. (15)
that for r&R, one gets U, (r)=0. Hence, although
determining the behavior of the pseudo-wave-func-
tions in their tail region, U, (r) is confined to the
core region. We note that both the empirical and
the semiempirical core potentials used for solid-
state applications usua,
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zero as Z„/r [e.g. , Fig. 3(c)]. For I present in the
core, they start out as C,/r' in the inner core,
have an l-dependent classical turning point 0
[W, (6) = 0] and a negative minimum WP"= W, (rP")
at y', ", and then approach zero as -Z„/r [e.g. ,
Figs. 3(a), 3 (b) and 4]. Their essential new feature
relative to many of the empirical model potentials
is the occurrence of the turning points ' r', . These
are strongly nonlocal and characterize the prop-
erties of the atomic core in that they represent the
point where the repulsive Pauli potential, mod-
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states of l = 0 and l =1 symmetry approaches unity
and U, (x)
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the values and regularities in some relevant oper-
ator expectation values obtained with the "true"
all-electron orbitals. We know that the expectation
values of the Hamiltonian operator are, by con-
struction, exactly reproduced for the reference
ground state of the atoms. Other operators that
might sample the pieces of the wave functions
which are relevant to bond formation in condensed
systems are x ', r, 2, &', etc. In particular, the
various moments of x are useful in depicting the
detailed deviations of g from ( in the various re-
gions of space, as in a direct comparative plot
they are hardly visually distinguishable in the tail
regions.

Figures 8-12 show the trends in the moments of
r for both the all-electron (full circles) and the
pseudo- (open circles) wave-functions for atoms of
rows 1-5. Both sets of wave functions were ob-
tained from a self-consistent numerical integration
of Eqs. (11) and (8), respectively, with an accur-
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appropriate symmetry, the order of improved can-
cellation remains l = 0~ l = 1 ~ l = 2. Clearly, the
consta, ncy of the orbital kinetic energy ratios with-
in rows reflects the fact that the pseudopotential
transformation we used retains the regularities of
the orbital localization present in the all-electron
picture. In contra. st, there is no guarantee that
the wave-function systematics would be preserved
in either the model potential approach"" "or the
Phillips-Kleinman" approach. Unless special care
is taken, these wave function need not reflect the
characteristic features of the true orbitals. '.

Still a different measure of the quality of the
pseudo-wave-functions is provided by the calcu-
lated x-ray scattering factors F(Q) We find th.at
the deviations of the pseudopotentia. l atomic sca,t-
tering factors from the corresponding quantity
computed with the true valence orbitals does not
exceed 2%, and is very small relative to the num-
ber of valence electrons. Some typical examples
are given in Fig. 14(a), where the core charge
density was simply added to the valence pseudo-
charge-density in calculating F(Q). The errors
are seen to be located almost equally at low and
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band widths of the solid. Clearly, if one wants to
study different energy regions in the condensed
phase (e.g. , outer-core states or highly excited
Rydberg states), one would have to construct a
new potential based
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