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Abstract. The short-range order (SRO) present in disordered solid solutions is classified
according to three characteristic system-dependent energies: (1) formation enthalpies of ordered
compounds, (2) enthalpies of mixing of disordered alloys, and (3) the energy of coherent phase
separation (the composition-weighted energy of the constituents each constrained to maintain a
common lattice constant along an A/B interface). These energies are all compared against a
common reference, the energy of incoherent phase separation (the composition-weighted energy
of the constituents each at their own equilibrium volumes). Unlike long-range order (LRO), short-
range order is determined by energetic competition between phases at a fixed composition, and
hence only coherent phase-separated states are of relevance for SRO. We find five distinct SRO
types, and give examples showing each of these five types, including Cu–Au, Al–Mg, GaP–InP,
Ni–Au, and Cu–Ag. The SRO is calculated from first principles using the mixed-space cluster
expansion approach combined with Monte Carlo simulations. Additionally, we examine the effect
of inclusion of coherency strain in the calculation of SRO, and specifically examine the appropriate
functional form for accurate SRO calculations.

1. Introduction: short-range order and coherent phase stability

The equilibrium regions involved in solid-state binary alloy phase diagrams are ordered phases,
two-phase regions, and disordered solid solutions. The latter form at elevated temperatures,
and consist of an A1−xBx phase in which the A and B atoms of the alloy are distributed in a
disordered fashion on the sites of a single, underlying lattice (often a Bravais lattice, e.g., fcc).
In the disordered phase, the atomic-scale occupation of sites of the lattice by A and B atoms
does not occur perfectly randomly, nor does it occur with any long-range atomic ordering.
Instead, local ordering or local clustering takes place in this solid solution, and is collectively
referred to as short-range order (SRO). The degree and type of SRO in a solid solution can be
quantified by specifying the Warren–Cowley SRO parameters, αlmn, for a given composition
(x) and temperature (T ):

αlmn(x, T ) = 1 − P
A(B)
lmn (x, T )

x
. (1)

Here, P
A(B)
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incoherent mixtures of phases with different volumes often contain misfit dislocations at
the interfaces between the two phases to relieve strain. Thus, the reference energies of
equations (3) and (4) involve a state of phase separation (A + B) which is incoherent.
Thus, we define the incoherent phase-separated (IPS) state as

EIPS = [(1 − x)EA(aA) + xEB(aB)] (5)

and this is simply chosen as the zero reference energy for our comparisons. In contrast,
coherent two-phase mixtures contain no such misfit dislocations, and thus both phases are
somewhat strained due to this constraint of coherency. This leads to:

(c) The coherent phase-separated state or coherency strain (CS), which involves strain in the
plane of the interface and relaxation of the atoms perpendicular to the interface. Thus,
the strain energy necessary to maintain coherency at an interface between A and B (called
the ‘coherency strain’) is necessarily dependent on the orientation of the interface k̂.
�ECS(k̂, x), the coherency strain energy, is defined as the energy change when the bulk
solids A and B are deformed from their equilibrium cubic lattice constants aA and aB to a
common lattice constant a⊥ in the direction perpendicular to k̂, while they are relaxed in
the direction parallel to k̂†:

�ECS(k̂, x) = min
a⊥

[
(1 − x) �E

epi
A (k̂, a⊥) + x �E

epi
B (k̂, a⊥)

]
(6)

where �E
epi
A (k̂, a⊥) is the energy required to deform A biaxially to a⊥. Each of the energies

�E
epi
A and �E

epi
B is positive definite and, hence, the coherency strain of equation (6) is

positive definite. Of particular importance is the lowest attainable coherency strain

�Emin
CS (x) = min

k̂

�ECS(k̂, x) (7)

where the minimization is performed over all directions k̂. �Emin
CS (x) then gives the

formation enthalpy of the energetically most favourable coherently phase-separated state.

Using the definitions of equations (3)–(6), we can now note that:

(1) Long-range order is determined by incoherent phase stability: for a long-range-ordered
compound to be a ground state (a zero-temperature stable phase), it must be lower in
energy than any other compound at that composition, as well as lower in energy than
any incoherent two-phase mixture of phases at other compositions, including a mixture
of the constituent elements. Thus, a necessary condition for a ground-state structure is
that �HO < 0. The formation energy �HO of equation (3) demonstrates clearly that the
long-range order, and hence the equilibrium phase diagram behaviour, is determined by
incoherent phase stability.

(2) Short-range order is determined by coherent phase stability: the short-range order involves
a single-phase field (disordered solid solution) of the phase diagram, and thus does not
pertain to incoherent two-phase mixtures. Some of these cases of distinct wavevectors can
be explained [8] by noting that whereas SRO is determined by the energetic competition
between all possible phases at a fixed composition, LRO stability is determined by the
energy relative to all possible mixtures of phases, even those at different compositions.
In fact, two crucial quantities for determining the types of fluctuation which develop in
disordered alloys are the ‘ordering energy’

δEord = �HO − �HR (8)

† In the general case of a low-symmetry (e.g., high-Miller-index) interface, there are three independent plane strain
components instead of just the uniform plane strain described by a⊥ (see reference [22]). Equation (6) is exact for
interfaces possessing high-symmetry axes, such as (100) and (111) in fcc-based systems.
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and the ‘coherent phase-separation energy’

δECPS = �Emin
CS − �HR. (9)

δEord (δECPS) represents the energy required to form the ordered (coherent phase-
separated) state, starting from the random alloy of the same composition. Both δEord

and δECPS are fixed-composition energy differences and are independent of the energy of
incoherent phase separation.

Figure 1 illustrates five possible relative orders of the energies �HO, �HR, and �ECS of
equations (3)–(6). The ordered structures ‘O’ in figure 1 are representative of the lowest-energy
coherent configurations, i.e., structures with dominant composition waves at the Brillouin zone
boundary (e.g., the L10, L11, or L12 structures). It should be noted that in cases (e.g., Al–
Cu) where the lowest-energy coherent configurations correspond to ordered compounds which
have a large degree of ‘clustering’, one can obtain clustering-type SRO even in a ‘type I’ alloy
(see reference [12]). In this paper, we study these types I–V of LRO/SRO behaviour in real
alloy systems using a first-principles total-energy technique for calculating �HO and �ECS,
and a cluster expansion method for calculating �HR and SRO.

Type I Type II Type IVType III Type V

Coherent 
Phase 

Separation
A(as) + B(as)

Incoherent 
Phase 

Separation
A(aA) + B(aB)
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type I: δEord < 0 < δECPS (e.g., Cu–Au)
type II: δEord < 0 ∼ δECPS (e.g., Al–Mg)
type III: δEord < δECPS < 0 (e.g., GaP–InP)
type IV: δEord ∼ δECPS < 0 (e.g., Ni–Au)
type V: δECPS < δEord < 0 (e.g., Cu–Ag).

The arrows in figure 1 show schematically the fluctuations in the random alloy which are
energetically most favourable. In ‘type I’, ‘type II’, and ‘type III’ alloys, the ordered alloy is
lower in energy than both the random alloy (δEord < 0) and the coherent phase-separated state
(δEord < δECPS). Therefore, energetic fluctuations of the random alloy are expected to be of
ordering type, depicted as R → O in figure 1. Thus, the SRO of solid solutions of types I, II,
and III alloys are all ordering type (kSRO �= 0), even though the LRO is ordering only in types
I and II, but phase separating (incoherently) in type III. On the other hand, a ‘type V’ alloy is
a prototypical ‘clustering’ alloy, where the coherent phase-separated state is lower in energy
than both the random alloy (δECPS < 0) and the ordered alloy (δECPS < δEord). Hence, the
SRO is expected to be of clustering type (kSRO = 0), represented by R → CS in figure 1.
Since phase separation is the lowest-energy incoherent state in a ‘type V’ alloy, the LRO of this
alloy is also phase separation. ‘Type IV’ alloys are intermediate between ‘type III’ and ‘type
V’. In type IV, there is strong competition between ordering and coherent phase separation
(δEord �
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one assigns the spin-occupation variables, Ŝi = ±1, to each of the N sites. Within the Ising-
like description of the mixed-space CE, the positional degrees of freedom are integrated out,
leaving an energy functional of spin variables only, Ŝi , which reproduces for each configuration
σ the energy of the atomically relaxed structure, with atomic positions at their equilibrium
(zero-force, zero-stress) values.

The details of construction of this energy functional within the LDA are discussed
elsewhere [13,18], and thus we give here only the salient points. We have used full-potential,
fully relaxed, linearized augmented plane-wave method [20] (LAPW) total energies in the
construction of the mixed-space cluster expansions. (In the case of GaP–InP, LAPW energies
were used to fit a ternary valence-force-field functional, which was in turn used to construct
the mixed-space cluster expansion [21].) Details of the LAPW method typically used in these
calculations, as well as the number and types of alloy structures used in the CE fit are described
in reference [18].

The expression used for the formation enthalpy of any configuration σ in the mixed-space
CE is

�H (σ ) =
∑

k

J (k)|S(k, σ )|2 +
∑

f

Df Jf �f (σ ) +
1

4x(1 − x)

∑
k

�ECS(k̂, x)|S(k, σ )|2.

(10)

J (
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the cluster expansion of equation (10) without �ECS and with finite-ranged interactions will
give [22] �H (n) ∼ 1/n as n → ∞, independent of k̂. Thus, one must include a �ECS

term in equation (10) since this introduces the orientation dependence in coherently strained
two-phase configurations, which cannot be described by short-ranged real-space interactions
J (R). Further, because long-period superlattices possess k → 0 dominant wavevectors, but
the strain energy is dependent on the direction of k̂, there is a k →
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disordered alloys as well, i.e., we want to introduce a wavevector dependence into equation (15).
Within a second-order expansion of the elastic energy, δErel can be written as [10, 11]

δErel(σ ) = −
∑

k

Vrel(k)|S(k, σ )|2 (17)

where Vrel(k) can be related to the lattice Fourier transforms of the Kanzaki forces and
dynamical matrix [10, 11]. We will retain the form of equation (17), but we will generalize
Vrel(k) to accommodate some of the shortcomings of the second-order expansion derivation.

To gain insight into the wavevector dependence of the relaxation energy, consider the
following breakdown of the relaxation energy:

δErel(σ ) = δEint
rel (σ ) + δEext

rel (σ ). (18)

The cell-internal relaxation δEint
rel is the energy gained when atomic positions within the unit

cell are relaxed, but the unit-cell vectors maintain their ideal angles and lengths, whereas the
cell-external relaxation δEext

rel is the energy gained when the unit-cell vectors are allowed
to relax. For some high-symmetry structures, δEint

rel = 0 by symmetry: structures with
dominant composition wavevectors at the Brillouin zone boundary often possess only cell-
external degrees of freedom. For example, the A1B1 superlattice along (001) is tetragonal,
composed of k = (001) waves, and possesses only the tetragonality ratio c/a as a symmetry-
allowed degree of freedom. However, the A2B2 (001) superlattice is composed of k = 1

2 (001)

waves, and, in addition to the c/a ratio, also possess a cell-internal degree of freedom.
It is interesting to know the extent to which cell-internal and cell-external relaxations

are energetically important in various alloy systems. Table 1 shows the LAPW calculated
relaxation energy for A2B2 and A1B1 (001) superlattice structures for a variety of size-
mismatched noble-metal and aluminium alloy systems: Ni–Au, Cu–Au, Cu–Ag, Ni–Al,
Cu–Al, and Al–Mg. The relaxation energy is decomposed into cell-internal and cell-external
pieces. Table 1 demonstrates that (i) when symmetry does not prohibit cell-internal relaxation,

Table 1. LAPW calculated relaxation energies (equation (13)) in a variety of noble-metal and
aluminium alloys. Shown are the relaxation energies for A2B2 (001) and A1B1 (001) superlattices.
The former possesses both cell-internal and cell-external degrees of freedom, and the latter possesses
only a cell-external degree of freedom. The fraction of the relaxation energy which comes from
the cell-internal relaxation is shown, and to give some idea of the scale of the relaxation energy,
the ratio between the relaxation energy and the formation enthalpy of the structure is also given.

A2B2 (001) superlattice
Superlattice δErel δEint

rel /δErel |δErel/�H (A2B2)|
Ni2Au2 −216.5 0.88 3.08
Cu2Au2 −143.1 0.84 21.36
Cu2Ag2 −96.7 0.90 1.24
Ni2Al2 −303.9 0.50 0.69
Cu2Al2 −88.2 0.80 1.19
Al2Mg2 −34.6 1.00 2.52

A1B1 (001) superlattice
Superlattice δErel δEint

rel /δErel |δErel/�H (A1B1)|
Ni1Au1 −22.0 0.0 0.29
Cu1Au1 −12.1 0.0 0.25
Cu1Ag1 −7.1 0.0 0.07
Ni1Al1 −141.7 0.0 0.21
Cu1Al1 −115.9 0.0 0.71
Al1Mg1 ∼ 0 — ∼ 0
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this mode of relaxation is dominant (e.g., 100% in Al2Mg2). Yet, (ii) cell-external relaxation
is not negligible: it is 100% (by symmetry) for A1B1 along (001) or (111); it is ∼50% for
(001) Cu2Al2, and ∼10–15% for Ni2Au2 and Cu2Au2. (iii) The A2B2 structure has much
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We next discuss the F (k) = 1 form of the coherency strain energy (equation (11)) used
in the mixed-space CE of equation (23) and show how it can fail for some short-period
superlattices in systems which possess strongly anharmonic strain. The failures include
prediction of spurious ground-state structures, and incorrect short-range-order patterns (when
compared with measured patterns). Attenuating the form of the coherency strain energy via
equation (20) is shown to rectify these problems.

3.3. Attenuating the coherency strain for short-period superlattices

The problems which can arise with the unattenuated form of the CS are most easily explained
with an example: Cu-rich Cu–Au alloys. This system has a very large lattice constant mismatch
(12%), and thus anharmonic strain effects are significant. First-principles calculations of the
coherency strain in Cu–Au alloys [18] have shown that the strong anharmonic strain of Au
results in a low CS for the (201) direction in Cu-rich alloys. This simply means that (201)
long-period superlattices (small k) will be lower in energy than differently oriented long-period
superlattices. However, this energetic preference for (201) structures does not necessarily
hold for short-period superlattices (large k), due to the first two terms of equation (10) which
describe interfacial energies of atoms near the Cu/Au interfaces. But the unattenuated form
of the coherency strain energy given in equation (11) will give a large energy lowering to
any Cu-rich structure which possesses composition waves lying along the (210) direction,
regardless of the magnitude of the wave (the superlattice period). Thus, the short-period
Cu4Au1



Short-range-order types in binary alloys 2759
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Figure 2. Energetics of the Cu4Au1 (210) superlattice relative to Cu3Au (L12) and Cu.

(2) The energy of Cu4Au1 is brought above the tie line connecting Cu3Au + Cu; thus,
attenuating the CS solves the problem of false ground states due to low-energy long-
period strain energies.

(3) Figure 3 shows that the SRO pattern is brought into quantitative agreement with experiment
by the attenuation. Calculated peaks in the SRO move from the (210) direction to the (100)
direction upon attenuation of the CS.

Thus, we see that the form of the attenuated coherency strain is most likely to be crucial
in ordering systems (where wavevectors away from the origin are important) which possess
highly anharmonic strain energies (where the soft elastic direction can shift as a function of
composition).

Next, we discuss the short-range-order behaviour for a series of alloys classified accord-
ing to their energetics as in figure 1. We show that the Al–Mg system represents a type II
alloy, which has not previously been discussed. We specifically point out the strong effect of
attenuating the CS for the Cu–Au and Ni–Au systems, and show that the attenuated strain leads
to SRO in Cu-rich Cu–Au alloys in agreement with experiment and significantly changes the
predicted SRO in Ni-rich Ni–Au, for which there are currently no measurements.

4. Short-range-order types

We now investigate the SRO/LRO types of figure 1. The calculations for some of these
alloy systems (Cu–Au, Ni–Au, and Cu–Ag) have been discussed previously [15] using the
unattenuated F = 1 form of the coherency strain. Thus, for these alloys, we do not provide
a detailed account of the experimental and theoretical literature on the SRO of these solid
solutions. Rather, we discuss the effects of attenuating the coherency strain on the SRO, and
compare with experimental diffuse scattering measurements where appropriate.
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phase is positive, �HR > 0, both from experiment [30] and theory [29]. First-principles
calculations of the heat of solution of Mg impurities in Al also show a positive formation
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the precipitation sequence [29, 32], with this structure being composed of (100) composition
waves. The metastable L12 phase does not appear in the Al–Mg phase diagram because the
equilibrium phases are incoherent with the fcc Al matrix; however, in view of the existence of
the L12 phase in coherent precipitation experiments, one might expect the metastable coherent
phase diagram to contain this phase. Thus, the (100)-type fluctuations in the SRO are a
refl
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(iii) Type III (e.g., most semiconductor alloys and perhaps Ti–V), where �HO > 0 (i.e., phase-
separating LRO) and �HR > 0 (unstable random alloy), but �HO < �HR. Here, the
random alloy can lower its energy by adopting ordering-type SRO (kSRO �= 0) even though
the LRO is phase separating (kLRO = 0). Thus, kLRO �= kSRO.

(iv) Type IV (e.g., Ni–Au), where �HO > 0 (i.e., phase-separating LRO) and �HR > 0 (i.e.,
unstable random alloy), but �HO < �HR (as in type III) and �ECS < �HR. Here, the
random alloy can lower its energy in two channels: by developing fluctuations akin to
those of the ordered phase (kSRO �= 0) or fluctuations corresponding to phase separation
(kSRO = 0).

(v) Type V (most phase-separating materials, e.g., Cu–Ag), where �HO > 0 (i.e., phase-
separating LRO), �HR > 0 (unstable random alloy) and �ECS � �HO. Here, the
random alloy can lower its energy only by developing phase-separating fluctuations, so
both kLRO and kSRO are of clustering type.

This classification scheme (figure 1) enables one to guess the qualitative SRO behaviour
of an alloy given the measured or calculated enthalpies of ordered and random systems. It
introduces three unusual cases (types II, III, and IV), in addition to the usual ordering (type
I) and phase-separating (type V) cases. By noting that SRO reflects a constant-composition
energy balance between two phases, one recognizes the possibilities of having ordering SRO
coexisting with phase-separating LRO (type III).

To accurately calculate the short-range-order profile we utilize the first-principles mixed-
bases cluster expansion (equation (10)), where the coherency strain energy is first separated
out from the total energy, and the remainder (‘chemical energy’) which reflects the constant-
composition term is expanded in (a momentum-space series of ) pair interactions and in (a
real-space series of ) many-body interactions. We found here that in those alloy systems where
the long-period structures (corresponding to k → 0) have relaxation energies for some ordering
directions very different to those of the short-period structures (corresponding to k → π/n),
a wavevector-dependent term F (|k|) must be introduced into the coherency strain to produce
a balanced description. Examples include structures with very large size mismatch such as
Cu–Au and Ni–Au, where anharmonic effects lead to large relaxation energies for a particular
ordering direction in long-period structures, while short-period structures do not have such a
large relaxation. F (|k|) then attenuates the�# ! ˆ) ,




