т	Dhue	C.	Salid Stat	a Dhua	Val	12	1070	Drinted in Great Britain @ 1070	

Ζ.			
· 1			
		3.5 ∉ s	
0			
,			
· · · · · · · · · · · · · · · · · · ·			
¢			
· • • •			

<i>k</i>	
5	

1	

ļ

Zunger and Freeman 1977a, b, c, 1978) or model potentials (Wendel and Martin 1978). Unlike the situation in molecular physics, we have in this case to deal with divergent terms. Moreover, the calculation of the total energy poses a practical difficulty associated with the need to compute a large number of six-dimensional integrals for the electron-electron interaction term. In linear band structure approaches (e.g. linear combination of atomic orbitals), this leads to a large number of multicentre integrals (Schaefer 1972,

	<u>.</u>	1 1 1 3	H.674 W	 14084		-		
								ļ ļ
85								
i								
1								
<u>ل</u> ه							•	
								_
7.7								
	<u>y</u>	·		4	ن نسب ا			

								,
								<u> </u>
JR.								
P								
ć t								
. ۴								
j.				 				
e.								
•								
3								

is readily applicable to calculations with mixed basis sets (e.g. plane wave plus Gaussian) as well. This enables us to extend our calculations to the case of transition metals.

The virtue of the present method rests in its computational simplicity; once we perform the band structure calculation, the total energy is automatically obtained as a sum of a few metricular calculated terms without multicentre integrations. The only

			1
_			
1			
	· · · · · · · · · · · · · · · · · · ·		
	- T.		

equation (1) is the density functional exchange-correlation contribution to the total energy (Hohenberg and Kohn 1964, Kohn and Sham 1965).

	The correction and in a correction of the		_
			ľ
k-2			
			ĺ
—			
1.0			
			Į
			-
3			
			1
<u> </u>			_
· · · · · · · · · · · · · · · · · · ·			

Coulomb repulsion energy becomes:

$$\frac{1}{2} \iint \frac{2\rho(\mathbf{r}) \,\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \,\mathrm{d}^{3}\mathbf{r} \,\mathrm{d}^{3}\mathbf{r}' = \frac{1}{2} \Omega \sum_{\mathbf{G}} V_{\mathrm{Coul}}(\mathbf{G}) \,\rho(\mathbf{G}). \tag{8}$$

Using the translational invariance and the decomposition of the plane waves into spherical harmonics and Bessel functions, the pseudopotential energy can be written as:

$$\sum_{i,\mu,e,i} \oint \psi_{i}^{*}(\mathbf{r}) U_{p_{n},i}(\mathbf{r} - \mathbf{R}_{p}) \hat{P}_{i}\psi_{i}(\mathbf{r}) d^{3}\mathbf{r}$$

$$= \Omega \sum_{i,i,e,e} \psi^{*}(\mathbf{k}_{i} + G) \psi(\mathbf{k}_{i} + G) \sum_{\mu} \frac{\exp[i(G' - G) \cdot \mathbf{R}_{\mu}]}{N}$$

$$\times (1/\Omega_{n}) \int \exp[-i(\mathbf{k}_{i} + G) \cdot \mathbf{r}] U_{p_{n},i}(\mathbf{r}) \hat{P}_{i} \exp[i(\mathbf{k}_{i} + G') \cdot \mathbf{r}] d^{3}\mathbf{r}$$

$$= \Omega \sum \psi^{*}(\mathbf{k}_{i} + G) \psi(\mathbf{k}_{i} + G') S(G' - G) U_{i} \cdots v_{i} + v_{i} \cdots v_{i}$$
(9)

disappears for large r). We still have infinite degrees of freedom for behaviour of $U_{ps}(r)$ at small values of r. If required, $U_{ps}(r)$ can be chosen such that both $U_{ps}(r)$ and $U'_{ps,l}(r)$

	where the prime means that D O is evoluted in the surroution	p. Combining aquations
r		
£ .		
·		
· · · · · · · · · · · · · · · · · · ·		

	extreme case of the transition metals Mo and W (Zunger and Cohen 1979) (characterised by localised d states). We have found that a convergence of 3 mRvd in the individual
	mennenne een he resched hu including about 500 200 and 200 alore weeks
<u> </u>	
	l.
	
ł	4
Y	
-	
-	
÷	
<u></u>	
\$	
1	

defined by

$$\sum_{i} \left[\hat{P}_{i} \psi_{i}(\boldsymbol{r}) \right]^{+} \hat{P}_{i} \psi_{i}(\boldsymbol{r}) = \sum_{i} \psi_{i}^{*}(\boldsymbol{r}) \, \hat{P}_{i} \psi_{i}(\boldsymbol{r}) \equiv \rho_{\text{elec}, i}(\boldsymbol{r}).$$
(30)

Note that $\rho_{\text{elec},l}(\mathbf{r})$ is not identical to $\hat{P}_l \sum_i \psi_i^*(\mathbf{r}) \psi_i(\mathbf{r}) = \hat{P}_l \rho(\mathbf{r})$. Now we take the gradient of the first term on the right-hand side of equation (3),

$$-\nabla_{R_{\mu}} \sum_{i} \int \psi_{i}^{*}(\mathbf{r}) \sum_{l,\nu} U_{\mathrm{ps},l}(\mathbf{r}-\mathbf{R}_{\nu}) \hat{P}_{l} \psi_{i}(\mathbf{r}) \,\mathrm{d}^{3}r$$

$$= -\sum_{i} \int \psi_{i}^{*}(\mathbf{r}) \sum_{l} \left[\nabla_{R_{\mu}} U_{\mathrm{ps},l}(\mathbf{r}-\mathbf{R}_{\mu}) \right] \hat{P}_{l} \psi_{i}(\mathbf{r}) \,\mathrm{d}^{3}r = \sum_{i} \int \psi_{i}^{*}(\mathbf{r}) \sum_{l} \left[\nabla_{r} U_{\mathrm{ps},l}(\mathbf{r}-\mathbf{R}_{\mu}) \right] \hat{P}_{l} \psi_{i}(\mathbf{r}) \,\mathrm{d}^{3}r. \qquad (31)$$

Using the identity

$$V(\mathbf{r}) = -\frac{1}{4\pi} \int \frac{\nabla_{r'}^2 V(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, \mathrm{d}^3 r', \tag{32}$$

equation (31) becomes

$$\sum_{i} \int \psi_{i}^{*}(\mathbf{r}) \sum_{i} \nabla_{\mathbf{r}} \left(-\frac{1}{4\pi} \int \frac{\nabla_{\mathbf{r}}^{2} U_{\mathrm{ps},i}(\mathbf{r}' - \mathbf{R}_{\mu}) \mathrm{d}^{3} \mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|} \right) \hat{P}_{i} \psi_{i}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}$$

$$= \sum_{i} \int \psi_{i}^{*}(\mathbf{r}) \sum_{i} \int \left(-\frac{1}{4\pi} \nabla_{\mathbf{r}}^{2} U_{\mathrm{ps},i}(\mathbf{r}' - \mathbf{R}_{\mu}) \right) \left(\nabla_{\mathbf{r}} \frac{1}{|\mathbf{r} - \mathbf{r}'|} \right) \mathrm{d}^{3} \mathbf{r}' P_{i} \psi_{i}(\mathbf{r}) \mathrm{d}^{3} \mathbf{r}$$

$$= \sum_{i} \int \left[-\frac{1}{4\pi} \nabla_{\mathbf{r}}^{2} U_{\mathrm{ps},i}(\mathbf{r}' - \mathbf{R}_{\mu}) \right] \left(-\nabla_{\mathbf{r}'} \int \left(\sum_{i} \psi_{i}^{*}(\mathbf{r}) \hat{P}_{i} \psi_{i}(\mathbf{r}) / |\mathbf{r} - \mathbf{r}'| \right) \mathrm{d}^{3} \mathbf{r} \right)$$

$$= \sum_{i} \mathrm{d}^{3} \frac{\mathbf{r}' - \nabla \int \mathbf{c} - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf{r}' - \mathbf{P}) E(\mathbf{r}') \mathrm{d}^{3} \mathbf{r}' - E - (\mathbf$$

$$E_{l}(\mathbf{r}') = -\nabla_{\mathbf{r}'} \int \frac{\rho_{\text{elec},l}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d^{3}\mathbf{r}$$
(34)

In the local pseudopotential approximation, equation (35) is reduced as

$$F_{2, \text{local}} = -\nabla_{R_{\mu}} \Omega \sum_{\nu, G} \exp(iG, R_{\nu}) N^{-1} U_{ps}(G) \rho(G) = -i\Omega_{at} \sum_{G} G \exp(iG, R_{\mu}) \times U_{ps}(G) \rho(G).$$
(36)

Summarising, the Hellmann-Feynman theorem in the momentum-space is

$$-\nabla_{R_{\mu}} E_{\text{total}} = -\nabla_{R_{\mu}} \sum_{\substack{\nu \\ \nu \neq \mu}} \frac{2Z^{2}}{|R_{\mu} - R_{\nu}|} - i\Omega_{\text{at}} \sum_{\substack{i, \, l, \, G, \, G'}} (G' - G) \exp[i(G' - G) \cdot R_{\mu}] \\ \times \psi^{*}(k_{i} + G) \psi(k_{i} + G') U_{\text{ps}, \, l, \, k_{i} + G, \, k_{i} + G''}$$
(37)

Possible applications of the theorem are diverse. For example, we can study the equilibrium configuration of the surface atoms, the surface chemisorption, effects of the impurities and defects in the bulk and the surface, or the phonon modes of solids.

4. Virial theorem

It is a well known fact of classical mechanics that the time average of the bounded motion

conclusion that equation (39) is to be modified for the pseudopotential Hamiltonian as follows:

$$KE = -\frac{1}{2}PE - \frac{1}{2}\sum_{\mu} \boldsymbol{R}_{\mu} \cdot \boldsymbol{\nabla}_{\boldsymbol{R}\mu} \boldsymbol{E}_{\text{total}} + \frac{1}{2}\sum_{i, l, \mu} \int \psi_{i}^{*}(\boldsymbol{r}) \left(\boldsymbol{U}_{\text{ps}, l}(\boldsymbol{r}') + \boldsymbol{r}' \frac{\partial \boldsymbol{U}_{\text{ps}, l}(\boldsymbol{r}')}{\partial \boldsymbol{r}'} \right)_{\boldsymbol{r}' = \boldsymbol{r} - \boldsymbol{R}_{\mu}} \hat{\boldsymbol{P}}_{l} \psi_{i}(\boldsymbol{r}) \, \mathrm{d}^{3}\boldsymbol{r}.$$

$$(42)$$

The difference between the all-electron case (equation 39) and the pseudopotential case (equation 42) originates primarily from the cancellation theorem. The correction term is equation (42) which is usually a large present the metric of (42) which is usually a large present to be reductive of the metric of (42) which is usually a large present to be reductive of the metric of (42) which is usually a large present to be reductive of the metric of the me

-				
C.				
,				
t -				
1.1				
			ł	
<u>į</u>				
<u>i</u>				
	Anna Andrea			
	Annua (Santa)			4
				4
				4
				4
	Are with a second se			4
	Acc. Adda			4
				4
	Acr			4
				4

) 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000	
	,
	1
Late Cond Kleinman L. 1070 Dun. D. D. 1 4514. 01	
	1
·.	