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Quantum architecture of novel solids
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Abstract. The current status of our understanding of Quantum Mechanics is that if
one specifies the chemical formula of a compound (e.g., CuAu, or GaAs, or NiPt) it is still
impossible to predict if this material is a superconductor or not, but it is now possible to
predict its crystal structure. This is a nontrivial accomplishment for there are as many as
2N possible structures for a binary compound. This article reviews this classic question of
structural chemistry and condensed matter physics: How can one figure out which of the
astronomic number of possible crystal structures is selected by Nature?
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1 Introduction
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Fig. 1 Schematic illustration of how the LEGO idea works. See Refs. [4, 5]

than the interaction between nearer atoms, then the expansion of E(σ) could re-
quire fewer than 2N interaction energies JGO. Thus, an LDA calculation of the total
energies ELDA(σ) of Nσ ordered configurations could be used to determine Nσ inter-
action energies [2], thus affording examination of the rate of convergence of the series
ELEGO(σ). If the series converges after ≈ 10 − 20 terms (as it does in many cases,
see below) then one can calculate E(σ) for any configuration σ by just summing over
that many terms. Furthermore, one could combine such an expansion
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allows us to calculate the excess energy ∆E(σ) of any arbitrary atomic configuration,
(even consisting of more than 100,000 atoms) and it includes automatically the energy
lowering due to atomic relaxations. Formulation of the method requires as input the
T = 0 K excess energies ∆ELDA of 20-30 ordered compounds ApBq consisting of only
2-16 atoms per unit cell. The excess energy ∆E(ApBq , (σ) of such ordered ApBq bulk
compounds is defined as the energy gain or loss with respect to the bulk constituents
at their equilibrium lattice constants:

∆ELDA(ApBq ; σ) = Etot(ApBq , σ)− xEtot
A (aA)− (1− x)Etot

B (aB). (1)

Here, σ denotes the type of ordered structure, x = p/(p + q), and aA and aB are the
equilibrium lattice constants of the bulk elements A and B. Etot(aA) and Etot(aB)
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Table 1 These calculations provide comprehensive state-of-the-art first-principles descrip-
tion of ground state structures, phase stability, and short-range order in these systems.

Pd-Pt [6] Ni-V [7, 8] Cu-Pt [12, 13]
Rh-Pt [6] Ag-Au [9, 10]
Cu-Au [11] Ni-Au [11]

The new Cu7Pt “D7-type” ground state structure was predicted [12,13], and subse-
quently found experimentally by S. Takizawa (1996). This is illustrated in Fig. 2 and
demonstrates the power of first-principles theory to predict previously unsuspected
structures!

Fig. 2 Illustration for prediction (Ref. [12,13]) and subsequent verification of a new structure
for Cu-Pt.

We are now at the beginning of the process of solving one of the classic problems of
Quantum Theory of Solids: We are transforming our qualitative and semi-quantitative
understanding of sohesion into a predictive theory of new materials!
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