// III.	

Light- and bias-induced metastabilities in Cu (In , Ga) Se 2 based solar cells caused by the (V Se - V Cu) vacancy complex GHYd\Ub`@UbmUbX`5`YI `Ni b[Yf`

7]hUh]cb. >ci fbU`cZ5dd`]YX`D\mg]Vg`1OOž'%% +&) `f&\$\$*\/Xc].`%\$"%\$*' #%'&', , &) * J]Yk `cb`]bY. `\hnd.##XI "Xc]"cf[#%\$"%\$*' #%'&', , &) * J]Yk `HUV`Y`cZ7 cbhYbhg. `\hnd.#gV]hUh]cb"U]d"cf[#\/cbhYbh#U]d#ci fbU`#\Ud#%\$\$#%3j Yf1dXZ\/cj Di V`]g\YX`Vmh\Y`5-D`Di V`]g\]b[

Articles you may be interested in DfYX]\WYX`fc`Yg`cZXYZY\Wg`cb`VUbX`cZgYhg`UbX`YbYf[Yh]\Wg`Uh7 = G`f7 i f\\bz`, ULGY XGL`gc`Uf`\W^```]bHYfZUW'g`UbX]a d`]\WUh]cbg`Zcf`]a dfcj]b[`dYfZcfa Ub\W` >"7\Ya "D\ng"`141ž`\$-(+\$%f&\$%(L'\%\$"\%*' #%'(,-'-,)`

:]fgh!df]bW]d`Yg`ghi XmcZdc]bhXYZYWbg`]b`gc`Uf`W^``gYa]W2bXi Wbcf`7 i +bG&` >"5dd`"D\ng"112ž\$, ()% `f&\$%&L/%\$"%\$*' #%'(+*&\$\$%

7 fYUhjcb 'UbX'fY'Ul Uhjcb cZ`][\h'UbX'V]Ug!]bXi WYX'a YhUghUV]]hjYg`]b 7 i fl=b`ž; U'EGY & >"5dd`"D\mg"106ž\$*' +& f&\$+ {/%\$"\\$*' #%" &% ' ' -

8YZYVM/[YbYfUh]cb`]b7if#bž_ULGY&\YhYfc↑bVM/cb`gc`Uf`WY``g`Vm\][\!YbYf[mY`YVMfcb`UbX`dfchcb`]ffUX]Uh]cb` >"5dd`"D\ng"'9Ož*)\$f&\$\$%L/%\$"%\$*'#%%+-'(,

9`YWfcfYZYWbbW'cZ7i`=b`G`&'h\]b`Z]`a `gc`Uf`W```g`UbX`XYdYbXYbW'cb`dfcW'gg`dUfUa YhYfg` >"5dd`"D\ng"89ž' \$(-`f&\$\$%{/%\$"%\$*' #%% (\$\$\$+`

(,) -(**V** -**V**) X

Stephan Lany and Alex Zunger^a National Renewable Energy Laboratory, Golden, Colorado 80401

(

exhibit meta table beha io that can lead to pe i tent photocond cti it. In Ref. 20 $_{\rm W}$ e di c ed in detail the gene al defect ph ic that lead to meta tabilit and PPC

dicating that meta table beha io of CIGS ola cell i accompanied b a potentiall det imental ecombination cente.

i needed to co ect fo the band-lling effect (Mo -B tein hift) e lting f om the high defect den it of the act al calc lation. D eto the mall effect e elect on ma in CIS and CGS, $m_e^*/m_e=0.09$ (Ref. 36), the e band-lling effect a e mot i ongl p ono need fo dono. Th , the e pecti e co ection fo H of the int in ic \ln_C^0 do ble dono in CIS i a lage a 1.5 eV. D e to the lage effect i e hole ma , $m_h^*/m_e=0.8$ (Ref. 37 and 38) in CIS, the bandlling co ection fo the ingle-accepto tate of V_C^0 and of the ($V_{\text{Se}}-V_{\text{C}}$)⁰ complex (in the accepto con g ation) i onl abo t 0.1 eV. Note that the e band-lling effect o iginate f om the e of nite- i e pe cell and not f om de ciencie of the LDA.

(iv) Potential alignment correction for charged impurities. The pe cell fo mali m de c ibe a pe iodic, in nite band minim m,⁴² the ange of po ible Fe mi le el in Fig. 2(a) (left) i extended abo e the CBM of p. e CIS, p to $E_F = E_V + 1.25$ eV, app oximatel co e ponding to the CBM of C. $In_1 {}_xGa_xSe_2$ allo w ith composition p to x 0.4, a ed fo high ef cienc CIGS ola cell . We ee in Fig. 2(a) (left) that in CIS, the isolated $V_{\rm Se}$ ha a deep, negati e-*U*-like, do ble dono t an ition $(2+/0)=E_v+0.05$ eV clo e to the VBM, and deep accepto t an ition high in the gap, $(0/) = E_v + 0.85 \text{ eV}$ and $(/2) = E_v + 1.14 \text{ eV}.^{39}$ i.e., The e deep accepto le el e lt f om the occ. pation of the antibonding b le el (Fig. 1), leading to the formation of V_{Se} (a^2b^1) and V_{Se}^2 (a^2b^2) . The i olated V_{Se} exhibit amphote ic beha io ha ing both deep dono and deep accepto le el , e he e the ... al o de of the dono and accepto le el i in eted, i.e., the accepto t an ition occ highe in the

[Fig. 2(a)] compared to the e pectire (0/) and (/2)le el of the i olated V_{Se} . The po ition of the deep accepto le el a o nd 1 eV abo e the VBM indicate that in a CIGS ola cell, the e le el can onl be occ pied e clo e to the CdS/CIGS here oj nction, w he e the Fe mi le el can i e to ch high ene gie. E en tho gh the occ pation of the e deep le el i accompanied b con ide able atomic elax.ation, no ene g ba ie a e in ol ed. Con e entl, the deep accepto le el a e e ilib i m t an ition. Note, ho_e e e, that the e deep le el a e p e ent onl in the accepto con g ation (hot III-III ditance), $_{ix}$ he e the b le el i located in ide the band gap [Fig. 3(a)]. In cont a t, no ch deept an ition le el exit a long a the complex emain in the dono con g ation (la ge III-III di tance), beca e the ble el i o t ide the band gap, i.e., abo e the CBM, in thi con g ation [Fig. 3(a)].

In the accepto -con g ation of $(V_{Se}-V_C)$, the e exit al o optical t an ition ca. ed b the b le el in the gap: The optical ab o ption ene gie d e to photoe ciation of elect on f om the VBM into the b le el $(a^2b^0 \rightarrow a^2b^1 + h)$, and the photol mine cence ene gie d e to ecombination of elect on in the b le el with hole at the VBM (a^2b^1+h) $\rightarrow a^2 b^0$), a e gi en in Table II. Late in Sec. V, _w e compa e the e optical ene gie to experimentall ob e ed ab o ption and PL ene gie. Unlike the (/2) and (2/3) accepto t an ition which a e ca ed b occ. pation of a gap tate, i.e., the b le el, the acti ated (+/) t an ition in ide the gap athe dema k the Fe mi le el at $_{w}$ hich the the mod namicall table tate of $(V_{Se}-V_C)$ change f om the dono to the accepto con g ation. The ingle-paticle tate being occ pied d ing thi t an ition, i.e., the a le el, i o t ide the band gap befo e a $_{w}$ ell a afte thet an ition [Fig. 3(a)] and, the efo e, doe not ca e an optical t an ition le el within the gap.

Configuration coordinate model for the conversion between the donor and acceptor configurations. Fig. e 3(b) hq_k the calc lated con g ation coo dinate diag am fo the $(V_{Se}-V_C)$ complex in CIS. He e, the di tance $d_{In, In}$ bet_k een the In atom e e a the eaction coo dinate. A hq_k n in Fig. 2(a), the $(V_{Se}-V_C)^+$ tate in the dono con g ation_k ith la ge $d_{In, In}$ [1 in Fig. 3(b)] ha the lq_k e t ene g in p-t pe CIGS, where the Fe mi le el i clo e to the VBM.3.5 /F8 1 Tf

hq, n in Fig. 4 (Ref. 44) fo the accepto con g ation, ith the hot In In ditance, along v ith the elect onic o bital (i o face plot of the v a e f nction a e) of the a and b defect le el, v hich, in thi con g ation, lie belov the VBM and in the band gap, e pecti el (Table I). The bonding and the antibonding cha acte of the a and the b le el, e pecti el, a e clea l i ible in Fig. 4.

The deep (/2) and (2/3) accepto t an ition of the complex. (Table II), which e lt f om the occ pation of the antibonding b le el, occ. at ome, hat highe ene g

t on $(a^1 \rightarrow a^2 + h)$, leading to a hole in the hallow accepto le el $(E_a \text{ in Fig. 3})$

o dinate diag am fo CGS [Fig. 5(b)]. Con e entl, the n-cond cti e meta table dono tate that exit in CIS fo E_F (+/) [da hed g een line in Fig. 2(a), CIS] doe not exit in CGS [cf. Fig. 2(a), CGS]. In CGS, once E_F i e abo e the (+/) t an ition le el, the po iti el cha ged complex w ill con et ia E . (2) into the $(V_{Se}-V_C)$ accepto con g ation, e en at log tempe at e. Th , the dono cong ation, ith la ge Ga Ga di tance exit in CGS onl a a compensating dono fo E_F ((+/). In cont a t, the metatable hallo, accepto tate [ed da hed line in Fig. 2(a)] ex.i t in CGS imila l like in l_{0x} e -gap CIS (cf. E_a in Table II). The onl diffe ence i the light low e ene g ba ie a ociated with the hole capt e p oce of E. (3) and the ome, hat la ge ene g ba ie fo hole emi ion b t an ition \dot{E} . (3) in the back_e a d di ection, i.e., $E_2=0.28$ eV and $E_3 = 0.92$ eV in CGS [cf. Fig. 5(b)].

/ (V -V)

Distribution between the donor/acceptor configurations of $(V_{Se}-V_{Cu})$, determined from the Fermi level in thermodynamic equilibrium. In o de to a e the change in the net accepto den it pon ill mination o e e e-bia t eatment, w e need to determine the di t ib tion between the dono and accepto cong ation of the $(V_{Se}-V_C)$ complex before the t eatment, i.e., in the elax ed tate at e o bia. Since the e ilib i m table change tate of $(V_{Se}-V_C)$ depend on the local Fe mi le el [cf. Fig. 2(a)], it will change a a f nction of di tance d f om the CdS/CIGS hete oj nction in a ola

Dynamics of donor/acceptor conversion. The e ilibi m dit ib tion between the dono and the accepto cong ation hold be ega ded a a tead tate it ation with e pect to the for a d and backwe a d direction of the t an ition E . (2) and (3). We now add e the tan ition d namic, i.e., the tan ition ate of E . (2) and (3), with we hich a new e ilib i m between the dono and accepto con g ation of $(V_{Se}-V_C)$ i e tabli hed, once an external pet bation i applied, e.g., ill mination o bia. If the external pet bation c eate an excer of f ee elect on , the complex will eact to thi pet bation b the elect on capt e, E . (2) in the for a d direction, and the con e ion into the accepto tate, the eb ed cing the elect on excer acco ding to Le Chatelie ' p inciple. Simila 1, if the external pet bation e pond to the dono-to-accepto con e ion of $(V_{Se}-V_C)$ d e to the capt e, E . (2), of photoexcited elect on . Thi p oce i de c ibed b the e ence $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ in the CCD of Fig . 3(b) and 5(b), and can take place onl where the complex exited, at leat path, a $(V_{Se}-V_C)^+$

diate di tance f om the j nction d i e the elect on capi. e, E. (2), in the fo_x a d di ection. Taking $n=10^7$ cm $^{3,48}_{,x}$ e nd f om E . (4) a time contant $_{ec}=10^2$ at T=300 K. Second, d e to hole depletion, the fow a d di ection of the hole capt e, E . (3), i pp e ed, which d i e E . (3) in the back a d di ection, i.e., hole emi ion, fo x hich e nd the time contant $_{he}=10^3$ at T=300 K. Th , both elect on capt. e and hole emi ion a e expected to lead to an inc ea ed accepto den it at inte mediate di tance f om the j notion, at the time cale of e e e-bia experiment. The e u_{α} o p oce e ma be di ce nible b thei diffe ent ene g E_1 and E_3 (Table II), which ho ld, to a large ba ie extent, dete mine the appa ent acti ation ene g of the bia ind ced change . Note, $ho_{e} e e$, that the t an ition , E . (2) and (3), depend on the local elect on and hole concent ation, which, in t. n, depend on tempe at. e d e to a tempe at e dependent depletion, idth. Thi ma lead to a cont ib tion to the appa ent the mal acti ation eneg, in addition to the basic height.

The eco e of the e ilib i m tate afte e e e-bia t eatment w a in e tigated in Ref. 15 in a the mall tim lated capacitance experiment, b anal ing the (negati e) capacitance tep afte w hich the increased capacitance of the meta table tate elax ed back to the capacitance of the e ilib i m tate before e e e-bia t eatment. In o. $(V_{Se}-V_C)$ model, thing tep i can ed b the back t an ition from the accepto into the dono cong ation b the hole capt. e, E. (3). The actination compare w ell w in the calculated energy basic in Table II. All o, the mean ed free encry perfactor of $_0=4$ 10⁴ ¹ (Ref. 15) pport the ($V_{Se}-V_C$) model, a w e in d from E. (5) a imila all e $_{ph}P_{hc}^2=10^3$ ap.978 250.4789 36 0.9.1096 0.0.9.978 235.8143 347.5361 Tm0.1096 Tc1. 7/F8 3842 Can the amphoteric $(V_{Se}-V_{Cu})$ defect explain unusual capacitance transients? E en tho gh the d namic of the actiated (+/) t an ition co e ponding to the dono /accepto con e ion of $(V_{Se}-V_C)$ i diffe ent f om con entional t anition (cf. Sec. IV), thi con e ion ma be, in both di ection, ob e ed di ect1 in capacitance experiment, p opo ed the tempe at e, and f e enc window a e app opiate. [Note that in the experiment cited abo e, the e idence fo the (+/) t an ition of $(V_{Se}-V_C)$ i onl indicet and i manife ted b a change of the hallow accepto concent ation d e to ill mination o bia. The hallow accepto den it i ... all determined at low tempe at e, where the (+/) t an ition it elf i not acti ated.] Recentl, Yo ng et al.¹⁶ and Yo ng and C andall¹⁷

imila it $_{W}$ ith o calc lated ab o ption le el of (

an o e e timated o e lap and, hence, inte action bet_{te} een defect and ho t o bital, where the choice of the experimental (none ilib i m) lattice con tant implie the p e ence of ome h d o tatic p e ... e acting on the lattice in the calc. lation. Fot natel, the e a e ___ all onl mino diffe ence in the defect fo mation and t an ition ene gie . Since the la ge lattice elacation of the anion acancie in II-VI compo nd i patic la l en iti e to the lattice con tant (Ref. 20) the diffe ence can be mo e p ono need, in the ca e of anion % p acancie , $ho_{g_{e}} e \ e$. Fo $\ CIS$ and CGS,

- we con med b additional calc lation that H change b not mo e than 0.2 eV when ing the LDA lattice con tant. ²⁹S. Lan', Y. J. Zhao, C. Pe on, and A. Z nge, Appl. Ph . Lett. **86**, 042109 (2005).
- ³⁰Y. J. Zhao, C. Pe on, S. Lan, and A. Z nge, Appl. Ph . Lett. **85**, 5860 (2004).
- $^{31}\mbox{S. B. Zhang, S. H. Wei, A. Z nge , and H. Kata ama-Yo hida, Ph <math display="inline">\,$. Re $\,$. B 57, 9642 (1998).
- ³²C. Pe on, Y. J. Zhao, S. Lan , and A. Z nge , Ph . Re . B **72**, 035211 (2005).
- $^{33}\mathrm{V}.$ I. Ani imo , I. V. Solo $\,$ e , M. A. Ko otin, M. T. C $\,$ $\,$ k, and G. A. $Sa_{\!_{\! R}}$ at k , Ph $\,$. Re . B $\, {\bf 48},\, 16929$ (1993); A. I. Liechten tein, V. I. Ani imo, and J. Zaanen, ibid. 52, R5467 (1995).
- $^{34}\mbox{M.}\ U$ $\,$ da, N. Hamada, T. Kotani, and M. $\,$ an Schilfgaa de, Ph $\,$. Re $\,$. B $\,$ 66, 125101 (2002).
- ³⁵L. Hedin and S. L nd it, in Solid State Physics, edited b F. Seit, D. T nb ll, and H. Eh en eich (Academic, Ne, Yo k, 1969), Vol. 23, p. 1.
- $^{36}\mathrm{H.}$ Weine $\iota,\,\mathrm{H.}$ Ne mann, H. J. H ble , G. K8hn, and N. Van Nam, Ph $\,$. Stat. Solidi B 81, K59 (1977).
- ³⁷T. I ie, S. Endo, and S. Kim a, Jpn. J. Appl. Ph . **18**, 1303 (1979).
- ³⁸We dete mined $m_h^*/m_e = 0.8$ f om thing an effect ie-ma -like den it of tate (degene ac facto of 2) to the n me ical den it of tate, calc lated in LDA incl ding pin-o bit co pling. The obtained al e i clo e to $m_h^*/m_e = 0.73$ dete mined \propto pe imentall in Ref. 37.
- ³⁹In Ref. 20, we determined V f om the difference of the ingle-particle ene g of the In-d (Ga-d) o bital in the defect calc lation elati e to In-d (Ga-d) ene g in the p e ho t. The p e ent method appea to ield mo e con i tent e lt and le . ncont olled catte compa ed to the fo me method. Acco dingl, the potential alignment V fo the

 $(V_{\text{Se}}-V_{\text{C}})$ complex determined here different berry to 0.2 eV from that dete mined in Ref. 20. The mot igni cant change i that $k e n q_k$ and a hallo, tate of the accepto con g ation of $(V_{Se}-V_C)$, imila to the hallo, tate of the i olated $V_{\rm C}$