

On microscopic compositions of the composition of of grain boundaries in polycrystalline CuIn1−*x***Ga***x***Se2**

M. J. Het $zer^{a)}$

Department of Physics, The Ohio State University, Columbus, Ohio 43210

Y. M. Strzhemechn

Department of Physics and Astronomy, , Texas Christian University, Fort Worth, TX 76129

M. Gao and S. Go *Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210*

M. A. Contrera and A. Z nger

National Renewable Energy Laboratory, Golden, Colorado 80401 basis is that act that centure help \sec mbina i n. S ch c m i i nal and elect aic and $\frac{1}{2}$ aic $\frac{1}{4}$ i at i $\frac{1}{2}$ between $\frac{1}{2}$ and $\frac{1}{2}$ in α is in CIn

_{1→*x*Ga_xSe₂ la cell ab *s*be la es ma improve the essall h_t laid} ef cienc. The high degree fings and inhomogeneity emphasize the importance of detailed grain-b-grain analysis. The every left show that careful section and ultrahigh acumum species of $\frac{1}{2}$ and $\frac{1}{2}$ an conditions, coupled with nanoscale instrumental resolution, are pivotal for such analysis. *© 2006 American Vacuum Society.* DOI: 10.1116/1.2209995

I. INTRODUCTION

C In₁_xGa_xSe₂ (CIGS) i an im_p in photodelectric mateial. N_rabl, vec vd c n e i n efeiencies f nearly 20% (Ref. 1) are bed ed f $\left(\begin{array}{cc} 1 & \text{if } \\ 0 & \text{otherwise} \end{array} \right)$ alline CIGS devices, hich of \sinh ingle c alline c n of a 2 . This

Gien cha aie f ζ ed m del, a e f echnie ineeded to be CIGS ichimetry and electaic ih nanoscale enii in del evaluate he diffet en mechanim. N met $\ddot{\ }$ die ha e been et f n CIGS and telated the remark and relation addressing grain chemistry and $m \in h 1 g$.^{14–17} In ζ^1 ceen a 6^{18} e $\zeta e \in \zeta_{\zeta} e d^{1} n$, he diect measurement of elemental composition of the indiid al \oint sain and the is b ndatie. We h ed hat c \oint c m i i n a CIGS GB decrease, me inte b alm a fac $\frac{1}{2}$, and that the $\frac{1}{2}$ k f nc i n decreases by e example $\frac{1}{2}$ h nd ed meV. In this a icle, e provide additional results in the $\frac{1}{2}$ sing similarly investigate chemical compositions in \mathbb{Z} in, pencial distribution, and optoelectionic features of GIs and GB \int n 1; ahigh ac m (UHV) clea ed CIGS δ - ec_i in face^t . B $\text{em } 1$ ing A get electron ec_i c (AES), ec nda elect n K e h ld (SET) mea temen, ca h d l mine cence \int ecs cost cost (CLS), and ec nda in mass ecs c (SIMS) e c n sm he he sejical δ edictions f δ ^the hele ba δ ie at GBs due to Cu de cièncy and \vec{e} , \vec{r} m he c m le m \vec{v} h l gical \vec{v} equive on the complex morphological properties of this and \vec{v} equivers of the complex m \vec{v} mą é ial.

II. EXPERIMENTAL DETAILS

The ame the died in this work were grown a solar the solar were grown on a solar than the solar were grown on a solar than the solar were grown on a solar w lime glass b $\hat{\lambda}$ a contact $\hat{\lambda}$ models with a contact with a $\hat{\lambda}$ back $\hat{\lambda}$ back $\hat{\lambda}$ and $\hat{\lambda}$ are $\hat{\lambda}$ back $\hat{\lambda}$ and $\hat{\lambda}$ are $\hat{\lambda}$ and $\hat{\lambda}$ are $\hat{\lambda}$ and $\hat{\lambda}$ are $\hat{\lambda}$ and $\hat{\lambda}$ se is centred diese the late.¹ The la^t diese thicknesses e e 1.5–2.0 m f $\text{CIGS}^{\mathbf{M}}$ and ~ 0.7 m f $\text{C}^{\mathbf{I}}$ M. The δ m le had f δ different nominal C /(In+Ga) δ a₁ f 0.78, 0.85, 0.93, and 0.99, and a Ga/ $(In + Ga)$; a i f 0.30, α i f 0.30, a determined binductively coupled a manufactively coupled plasma spectroscopy. In $\delta d\mathfrak{e}$, bain high-ali cleaved δ ecin, he f ll ing s cedse a implemented. First, he glass backide \mathbf{r}_a am le a *finned* b g inding to bring he am le hickne \sim 1 mm. The back ide $\&$ e hen n ched in a diam nd a a depth of \sim 500 m. An \sim 300 $^{\circ}$ hick Ni la $\&$ a de^wited nthe back ide to create an electrical c n ac^W sed ce cha ging de elecs n-beam b mba dment. The amples secleared in actuality measuremen^t in an ambient \Re e fe f ~10⁹ T W and then immediately an $f \in \mathcal{S}$ and $f \in \mathcal{S}$ and $f \in \mathcal{S}$ are $f \in \mathcal{S}$ and $f \in \mathcal{S}$ are of $f \in \mathcal{S}$ and $f \in \mathcal{S}$ are order with $f \in \mathcal{S}$ and $f \in \mathcal{S}$ are $f \in \mathcal{S}$ and $f \in \mathcal{S}$ are $f \in \mathcal{S}$ and $f \in$ 10^{-10} T W. The *in situ* mea sement exact performed em-1 ing a JEOL 7800F canning electron mich the e i ed ih a hemi hé ical elec $\frac{1}{2}$ n analm338. heef9.978 f-272.1a-27

FIG. 1. (a) AES C $/(In+Ga)$ $\{a_i\}$ in, h n in SEM image. A decrease cc $\int a \cdot \ln \text{GB}$ (in 27). The data in \mathcal{A} extending the line h n in he g ea he labeled in The C'/(In+Ga) at a each in i \mathbf{W} estaid. (b) AES C /(In+Ga) δ is in in δ in δ is position, in δ in δ SEM image. A decrea e cc $\frac{1}{2}$ he GB (in 10 and 17). The data in α e aken along the line α in the β is a the labeled in The $\mathcal{C}^{\mathbf{w}}$ /(In+Ga) ai a each in \mathbf{Y} d'aid.

a i ical analysis for all of the AES data taken. Data points for $\frac{1}{2}$ it is the points of ϕ e cla i ed a ei het GI ζ GB a de et mined ζ m the Secondary electron (SE) image taken f $\frac{1}{2}$ each can. O' equal can. 100 GB, ih igni can l m ie GI in, ϕe died and analyzed from the AES data to compile the ℓ^2 tatistics. The data collected for each amplies howed a sed minance f C $/(In+Ga)$ and I_1 and decrease a \mathbf{W} he GB. F each am le, he a é age C^* is \mathbb{I} III ation at calculated at the GI and a the GB. F the am le \mathbb{V}_1 h a nominal \mathbb{C} /(In+Ga) \tilde{a} i f 0.78, he al e f hi \tilde{a} i a 0.085 lower at the GB compared the GI. The \cdot he \cdot he \cdot he samples is a three samples is \iiint_C' λ (In+Ga) λ a₁ i f 0.85, 0.93, and 0.99 h ed de-

ih he la ge number f can $\frac{1}{2}$ f smed also he ed he large, a $\acute{\text{e}}$ age difference from GB. GI. The standard eri in the all ic f is the GI allectric form the 0.78, 0.85, 0.93, and 0.99 c m^{ort} i i n am le $\&$ e 0.011, 0.016, 0.011, and 0.014, $\begin{bmatrix} \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot \end{bmatrix}$. The statistics of the GB $\acute{\text{e}}$ e 0.022, 0.028, 0.029, and 0.022, ie $\acute{\text{e}}$ eq. i el. Th^u, in all b_{ut} he 0.85 c ncentation ample the average difference are ide the aitical $e^{\frac{1}{2}x}$. In general, the b e^x ed C $/(In + Ga)^{1/2}$ a i ℓ is equivelent on the average a i imagel 30% lower than e ecced in the nominal ale. This effect may be ℓ lained b the fact that me grain cleave along the ℓ b ndaties a het than the grain. Our the grain. Our the grain. Our than the grain. Our the grain. Our the grain. cleave can e^{xpo}ted both grain interiors and grain boundaries ince clea ing can break a a_z grain as ell as e a_z are h le grain from each μ he. AES measurements across e^{t-} $\sqrt[n]{\ }$ ed g ain ld he ef $\lceil \cdot \rceil$ h igni can change between grain $\lim_{n \to \infty} 6 \frac{1}{n}$ and grain boundary since b h are ac^t all b ndaties. This i c n i en ith me f he min \ AES a ia i n als ead mentined and he high \ stace en i i f he AES echnie. He $\ddot{\text{e}}$ and $\ddot{\text{g}}$ ain studied did h^{\prime} alected the expected stock ichimetry. $F \cdot m$ he ai it data, it was the effective possible to conclude that $b \thinspace h$, e fgrain^w greef een after a cleave, ih b $\text{ind}\mathfrak{a}^*$ -cleaved grain some hand more common than b^M lk-clea ed g ain. The a e age al $b^{\mathbf{d}}$ ^t li_{st}ed above include all grain. In case $f \in \text{hich } i$ a said that the grain cleaved the gh i interior. The composition is interested to example and change are m ch la^tge than the e a e age, a h n in Fig. 1. De i e hi, e en g^rain \int ih he l C /(In+Ga) \int a i \int ill di- α la ed C de cienc^y a GB. This is likely because the elec-If n beam incident on the grain boundary probes in the state problem in the grain boundary problem is problem. all $m \leq b$ nda^t de interior 1 me. Similar analysis a \circ and f \circ the O and Se species to the predic- $\mathbf{t}^{\mathbf{w}}$ and \mathbf{v} in \mathbf{t} and \mathbf{v} is the resulting data revealed not in \mathbf{t} and \mathbf{v} is the revealed not in \mathbf{t} and \mathbf{v} is the revealed not in \mathbf{v} and \mathbf{v} is the revealed n clea indication find ea ed O $\frac{1}{3}$ ded'ea ed Se a GB.

cial entries of 0.024, 0.071, and 0.041, ϵ eq i el. The am le

B. S. Unity Co. A. Unity Co. 5U.

SET data from e e al amber he e d in need ik f nci n deceae a GB. Vale f. \mathbb{R} . Vk f nci n diffet ence between the semiconductor and the electron and τ β e de β mined from the onergient energy of the SE emi in, but a from a linear extrapolation to the base line. We f 'nd ha he acc ac f SET as a 'i be f ga ging he κ is the initial strongly dependent on b the level of function is κ in κ in κ in the level of κ \forall face c n amination and the quality of the cleave. High am n f'c n amination and a formation surface eem $\int e^{x} \cdot \int e^{$ form contamination in species and/ γ , the Mo back contact. In $\delta d \text{d} \text{d} \text{e}$ determine the effect of a rough surface morphology n he SET mea $\frac{1}{2}$ he angular dependence f he SET eak a mea sed n'a iece f g ld f il, se $\frac{1}{4}$ é ed. \mathcal{C} come \mathcal{C} contamination. We bet ed a felatively weak (less han 20 meV) de endence f he n e i i n \mathbb{F} mall (5) ang la change selative the stace n smal. S meha la get $($ 200 meV) change cc Wed a he angular $\overline{\mathcal{X}}$ iation reached 15 and a idl ζ gives ed with change in

b h he neeres and intensity for angle 20. To a id si ne change de ne en grain in estace, cate a aken $\frac{1}{6}$ amine a GB in a interface at $n \in \mathbb{N}$ incidence.

Fig $\lceil e \rceil$ b can K gh different GBs f he am le jh n minal C $/(In+Ga)$; $\frac{3}{4}i$ f 0.99. The k f nc i n difference between the sample and the analyzer (E) i 1 ed f $\frac{1}{2}$ $\frac{1$ each GB. Negative di Yance indicate initial mea "ement in ne grain, $\sin a$, the GB, and positive distance from the b nda in an adjacent grain. This gree h decreases in he which is not in from 250 almost 500 meV for grain b ndaries 1 and 2, e eciel. Other grain b ndaries h imila decrease although checkease can a idel^y from 0 500 meV. The est sim the error sements in the interval of meV in the $\frac{1}{2}$ meV. The e decrease in period are \mathbb{F} aligible imilar the canning Kel in ζ be mea ζ ement ζ the band of ζ at chalc $\forall i$ e GBs reported in Refs. 15 and 16, where the a h \int f \int nd a potential decrease (d n a d band bending) a the GB f 100° 200 meV, hich i $\frac{1}{200}$ can l le than the change se is ed here. This indicate the importance of UHV in a iding c n amination not only for chemical comin analysis but also to convectly gauge potential change.

C. Cthodolumⁱnesses spectroscopy by U. U.

CLS $\begin{bmatrix} e & 1 \end{bmatrix}$ e b ained f $\begin{bmatrix} e & 1 \end{bmatrix}$ he same le $\begin{bmatrix} h & 1 \end{bmatrix}$ he nominal blk C $/(\text{In}\mathbb{F}Ga)$ $\int a_1$ f 0.99. Thi a_n is amended blue a clea ed *ex situ* and hen immediately l'aded in the Ac m chamber. The data a ac is ed in gh imaging f emiina at iclai a elength and the gheesta cllected from spots and α ^w existed a reasonal location-specific variain in CLS data et bet ed a ell. Practicall all the \circ ecs a e hibited multiple eaks, he with n if hich as fom $g \sin \theta$ grain. Figse 3 how an example \mathbb{F}_1 example \mathbb{F}_2 example \mathbb{F}_3 and \mathbb{F}_3 and \mathbb{F}_4 example \mathbb{F}_4 example \mathbb{F}_5 and \mathbb{F}_6 and \mathbb{F}_7 and \mathbb{F}_8 and \mathbb{F}_7 and \mathbb{F}_8 $\text{ec} \S a_1$ aken from different region \mathbf{w} f he sample: the same discussed in \mathbf{w} inc, eak ihemi in energies of 1.12, 1.16, and 1.19 eV are seent in the ecs a. The feature change in intensity a different locations on the sample. The low energy ail n the ecs a likel atiest m defect and divided $\frac{1}{2}$ thin the Im .²¹

CLS imaging a different ed emi i n energies f \hat{h} herent energies function ill sae hi lack f nifsmi. Figse 4 h e^t and e^t CLS image ϵ im ed n a c We nding SE image. The higher energy eak are localized consider the near the

CIGS GB 3 Indeed, the 25%–50% decreases of Cu content e b $\acute{\text{e}}$ e e $\acute{\text{e}}$ imentally are in g d an in a i e agreemen_t in h e sedicted by Jaffe and Z nga.¹¹⁰ While he e act interfacial characteristics of the chemical bonding at $GB \text{ a} \text{ e} \text{ n}$, kn n , model h as $\text{ m} \text{ e} \text{ G} \text{ B}$, be imilar to be similar to be simila free stace are reasonable ince neighboring grain may be stated as $\frac{1}{2}$ n f $\lceil \cdot \rceil$ f m chemical b nd between them. GB as e c mm nl m deled a back \searrow back $\text{Sch}^{\mathbf{w}}_{\bullet,k}$ basides, and hi i c ni en ih an a^k ach a ming he GB to be _, hiIn \overline{m} del \overline{i} de

$D. S. U_1 \stackrel{k}{\sim} U_1 \stackrel{k}{\sim} \cdots$

A SIMS depth in the function of the same left $\ln C$ /(In+Ga) e al $\,$ 0.99 is h n in Fig. 6. The data indicate a Ga gradient the gh the ample consider the standard g μ c¹ and the spatial dependence \mathcal{F} f he CLS $\sum e^{-\frac{1}{2} \mathbf{i} \cdot \mathbf{j}}$. The Ga ignal $\int d\mathbf{k}$ b^t a $\sum \text{im} \mathbf{q}$ el 50% f i ma imm al e near the front stace f^{\prime} he Im. A Na increase f et an δ de f magnitude (fin a δ imagely 10. 200 c $n \neq 10$ c n) near the M back c $n \neq i$ ical and may be de to mich single change in the Model in the Mode I is face. It is consider the interviewed reported it is easily reported it is $\frac{1}{2}$ and $\frac{1}{2}$ The depth is leal in \mathbb{F} diffusion finand Ga in the M la $\dot{\sigma}$, $\dot{\sigma}$ adening he back in $\dot{\sigma}$ face. Imaging f he In and Ga ignal \int thin his b adened in ϵ face h inhom geneitin b \mathbf{M} he In and Ga signal laterally on a scale f en f mich n, m ch la get han he mea $\$ $1 \text{ in } (120 \text{ nm})$, he ical grain ize $(\sim 1 \text{ m})$, λ he M $la \in \mathcal{S}$ is the $(90 \t{b})$. No lateral spatial localization of the Na ignal a di cé nable ei hé $\frac{1}{2}$ thin the b lk CIGS la e \int in the M la $\acute{\text{e}}$.

IV. DISCUSSION

The AES $\{e\}$ f nd f $\{\$ he CIGS secimens measured ative consider i theoretical predictions of Cu defined at i iele an aiic n he CIGS la $6 \div 6$ ie $\frac{1}{2}$ ed a laige n'mbe fmea 's ement acs ai 's egin f he am $\,$ le $\,$.

The b & ed SET inh m geneities & e stronger than the exhibited in the AES and CLS meal ζ is emergent of ζ in the AES and CLS meal ζ is emergent of ζ time \oint ain-to-grain period change \oint e so significant that the b c sed any change of potential at the GBs. We $a \circ b$ edhee beain ee alfactors: ii) aaiin in grain-to-grain storichiometrical contraction of the store in the store in the store in the store in the stock $\sin \theta$ in the stock stoc the grain face \vdots is the distimilar crystall grain in α crystallographic orientallographic orientallographic oriental ι_i i Λ (cnien in ι_i) (cnien ι) ι) (cnien ι) (cnien ι) ι and ι) (cnien ι)

de le ed GB in estace can inhibit heliec mbination, gen- α ating higher photometric α is α in the show that the show ac m le el del i el tel decrease de la decrea el decrea el decrease substaniall near the GBs, consider the interior is a band offset due C acance f maj n \bar{p} -^w e band bending. In either ca e, he h le bassier hat forms e committed majority can is the movement and α is the GBs and therefore reduces α \vec{r} ecombination. We f^{ou}nd maj[{] nonunif{ \vec{r} m g ain-to-grain ichi metres, hich can account for the well known diffc 1 main aining CIGS nif $\{\text{mi}\}$ in device structures. Our ie ζ em ha ize the importance of the ing ζ defines the importance of studying such complex in ζ ϵ em a 1 d^e alline CIGS em^p ing nanoscale ϵ l_1 in, UHV en inment, and catefl am le se aquin ζ ced ζ e.

ACKNOWLEDGMENTS

Thi $\forall k$ a \lbrace ed b DOE G an N . DE-FG02-97ER45666 (1 calized AES and CLS, Jane \overline{Z} h). T f he a h \int (M.A.C. and A.Z.) are \int ed b DOE-EERE nder NREL Grant N. DEAC36-98-G010337. The a_rh s Id like thank Mark Gleckler for effldic in.

- ¹K. Ramana han *et al.*, F_{g.} Ph_p laic **11**, 225 (2003).
²A. Rocke_{tt}, A. Aga^ral, L.-C. Yang, E. Banda, G. Ken h le, C. J. Kiel, and H. Talich, *Proceedings of the 21st IEEE Photovoltaic Specialists Conference* (IEEE, Ne Y K, 1990), . 764.
-
- Conference (IEEE, Ne Y ^s k, 1990), . 764.
³C. Pén and A. Z ng k, Ph. Re. Le_{tt.} **1**, 266401 (2003).
⁴S. Sch lé, S. Ni hi aki, J. Beckmann, N. Rega, S. Biehme, S. Sieben^{ri}, and M. C. L^w -Seiner, *Proceedings of the 29th IEEE Photo-*