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Figure 3 Calculated leading configurations for charged excitons. Left: one hole
and N electrons; right: one electron and N holes. For the positively (negatively)
charged states, the single electron (hole) in the initial state is in the lowest electron
(hole) state. The last line indicates whether fine-structure effects are predicted (Y)
or not (N).

captures the multiband, intervalley and spin–orbit interactions
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Figure 4 Measured photoluminescence spectra from dot A for different exciton charges. Photoluminescence intensity (840 s integration time) is plotted against energy
for Vg corresponding to the centre of each charging plateau. Individual peaks are labelled: red circle denotes a photoluminescence peak from the particular exciton with
charge n; blue circle emission from exciton with charge n −1; black circle biexciton-related emission; green circle emission from an excited initial-state configuration.

predict that the hole charging sequence is perturbed by the presence
of the electron: without the electron, the second p state is not
occupied at all15. Curiously, the predicted initial configuration

is open shell, yet the photoluminescence is almost unpolarized,
both in the experiment and in the theory, signifying a zero-spin-
state coupling of the unpaired holes. Small fine-structure effects
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are still present in the theoretical results, originating from the
admixed (27%) configurations in the initial state; these effects are
beyond the experimental resolution. Theoretically, the signature of
the open-shell X5+ is the presence of a multitude of peaks with
comparable intensity, whereas the closed-shell X5+ configuration
has one strong peak accompanied by many very weak transitions.
Experimentally, there are several strong photoluminescence lines,
strongly supporting the open-shell configuration. The non-Aufbau
filling of hole states continues for X6+ where p2 is left half
empty. A polarized experimental spectrum (dots A and B) with
a few peaks agrees with the theoretical prediction but the X6+

photoluminescence is very weak.
(2) Non-perturbative Coulomb interactions. A perturbation

treatment of the Coulomb interactions predicts a blue-shifted X1+

on the basis of a red-shifted X1− (ref. 18). Indeed, our calculated
Coulomb energies17 Jhh = 25.9 meV > |Jeh| = 25.3 meV > Jee =

24.9 meV lead to a Jhh −Jeh =0.6 meV blue-shift of X1+ with respect
to X0. However, this effect is countered by the non-perturbative
mixing of the h2

Se
1
S configuration with other configurations,

a mixing that produces an overall red-shift of X1+, a clear
feature in both experiment (Fig. 4) and theory (Fig. 2). This
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our theory, we extrapolate in Fig. 4 the photoluminescence spectra to zero
electric field. This is crucial as it reveals a red-shifted X1+, not a blue-shifted
X1+ as a cursory inspection of Fig. 1 might suggest. None of the splittings in the
experimental photoluminescence depend on electric field demonstrating the
validity of this method.
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