II-VI oxides phase separate whereas the corresponding carbonates order: The stabilizing role of anionic groups

 $\begin{array}{c} \mathbf{x} & \mathbf{x} & \mathbf{x} & \mathbf{y} & \mathbf{y} & \mathbf{x} & \mathbf{y} & \mathbf$

 $\begin{array}{c} \mathbf{v}_{\mathrm{trag}} & \mathcal{A}^{\mathrm{trag}}\left(\ldots\right) & \mathcal{A}^{\mathrm{trag}}_{\mathrm{trag}} \mathbf{v}_{\mathrm{trag}} \mathbf{v}_{\mathrm{t$

;' . 10 1 . حور 4 τα - 10 法 1/ <u>للہ</u> ~ 1 131 e 1 $e \Delta E_{\bullet}$ (2 2 Δ 2 Λ f non-1. . . (Δ ſ) / ())] _ (f (Δ . (. 4 ٩. 1 -1' د ب ٩... . 1 f 🚬 🗸 . 3 ٦ 2 بي 1 ۹.... (1 1

III. FORMATION ENTHALPIES OF RANDOM AND ORDERED CaO-MgO AND CaCO₃-MgCO₃

. ≠ e	<u> </u>	/ Xaa	ا الح مد	• 1	۲ ۲	···
<u>ب</u> ۲۰۰	1 4	1 1	S f S	<u>ر</u>	· + .	• • • • •
f + .	She / y	, ч	مەلا ئى		· • *	いれーで
<u>_</u> • ۹	. <u>.</u> ► ¶	<u> </u>	1	2	۰ ۲۰ ۰۰	4 4
he he	· 9 ····	-1-	۲. ۲	1.	29 / L	Luna .*
	· +*	den d	e Nam			

۹. · A 29 A %) . ΔE W- 5 P 1 3

V. DECORATION OF METAL SUBLATTICE BY DIFFERENT CATIONS AT FIXED VOLUME: ΔE_{CE}

1 - 1 / .11 to the in a parting 23 <u>_</u>~ 1 e Δ*E*, e • Ĩ f f 31 ΔE ٤ 7674 1* ΔE e 42 3 ÷e $(\Delta$ · ·) ((; ⁽⁾ , ')'; $\sim \Delta E$ (3 1 ٠, ΔE) 🧏 ···· () ·) - Frank 1.5 ____

VI. CELL-INTERNAL RELAXATION: ΔE_{SR}

A. Oxides

 $\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$

VII. CONCLUSIONS

 $\Delta E = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n$

ACKNOWLEDGMENTS

Vor van de server van de serve

" - m f - - - i $\frac{1}{r} = \frac{1}{r} + \frac{1}$ er 119e. (.....) eman mær si mel a , ar 93e . (, , ,) — AB = AB AB =592 (m. 7) **84**2 (....) $\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + \frac{1$ 🐮 🐨 692 🚬 (...) 11 . . ma 4 er 44 en con con en

- $(\cdot,) \xrightarrow{e_{1}} \sqrt{e_{2}} \xrightarrow{e_{1}} \sqrt{e_{2}} \xrightarrow{e_{1}} \sqrt{1} \xrightarrow{e_{2}} \sqrt{1} \xrightarrow{e_{1}} \sqrt{1}$
- $\begin{array}{c} & & & \\ &$ or the at
- $\int \frac{1}{100} \frac{$