

3 1

3 - 3 3 $E(A B_1 C) = 3$ 3 P / , $\lim_{n \to \infty} E(AC, \gamma) + (1 -)E(BC, \gamma),$ 3 (AC-3 BC-3 3 3 3-3 3 **, ,** , . 3 (3 -3 33, 3, 3 3) 3 3 -33(.. 3 3-3 3 3

1 3 -33).

-

3 3 3 1 - 3 1 1 3-3 - 3 -3) 3 (3) .24,26,27 3 3 3 () 3 13 3-1 3-3 13 3 3 . 3 - () . 3 3 -3 3 3 . 3 3 1 3

1. Cluster expansion

3 E()I I -3-, ,

$$E () = _{0} + \frac{1}{2} \left[\sum_{j'} + \sum_{j'} + \sum_{j',j'} + \sum_{j,j'} + \sum_{j',j''} + \cdots \right] + \sum_{k}$$

1

E () 3 ,...} 3)}. 3 { *E* 3 3 3 3: () 3 1 3 13 13 _ 3 I 3 3 3 1 33 . 3 **7**3 3 i. ı. 1 3 3 3 [. ., ı. 3 2() . (1)]. З, ī . 3 3 () /() 3 ı . 3 3 33 3 , , ı. . ₹3 3 3 3 3-Т 3 I

()ı ź $A B_1$ С з. 3 1 3 [..., 3 3 3 . (1)]. 3 13 2() 3 3) /(). (ı. 3 3 ī 3-- 1 . , 3 3 3 3 3 3-3 3 3 ı. 3 3 3 13 ı. . 30) 3 (I 31,32 3 ٦, 31 9 3 33 9 9 1 3 435 . " / E33 3 I 1 н (3 3) - 1 -, 3³³ 3 3 3 3 I 3 3 3 3 13 3 _ 3 3 3 33 3 I (. ., 3) 3 13 3 3 3 3 13 ī ı 24 3 13 , **I**

2. Monte Carlo simulations of the atomic microstructures

	3,	I I	3	33	1
2	I.		e	3	.34,35

3. Relaxation of the atomic microstructures

			7	ıЗ		(,	3	ı	3			-
3 1)	3				I.	-
31	3					I.				З,	3	3
				3	-		3				P /	,
/ _W	144	nn,	1	3	3				13		,	-

[. 3	()],	3	*	, 3				3
	3	3	3	· .	3	3	I.	
	3	3		1 1	3			3-
3	I.			3.			313	6
=2400)	3	3		3	(,		
),	3	3	I.	3	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ı <u>3</u>)	3	3. I
3 3 3 .			
• • • • • • • • • • • • • • • •			
1. Random alloys			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			

6()1 27000 3	• à · ,	r B		ı 3)	3	<u></u> З. I	ı	3	, 16,17, 88 how-53ord536 041%,Tc (
•	•								

2. Coherent alloys

()]

- ²⁹ . . 33 3 , . ³ n , . . 3, . . . , 1687 (1999).

- 34 , 521 (2002).
- :// 3

- _, 16310 (1996).

- (1990).

- 45 .- . , . , . , .- . , .- . , . ,- . , . , • . , , . 212109 (2009).

- 13
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
 ,
- · , · · , · · · · , 061903 (2007).