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calculations.
According to the recent work of Brotherton

et al. , there are three categories of sulfur level in
silicon, termed S I, S II, and S III. Measuring ener-
gies with respect to the minimum of the conduction
band E„ the S I levels occur in a pair at E,—0.18
eV (A level) and E,
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TABLE II. Summary of calculated gap levels of a
&

symmetry for substitutional Si:0, Si:S,
and Si:Se. The numbers represent distance from the conduction-band edge. All values are in

eV. We show the results of the present work both as orbital energies and as removal energies

(transition-state values) that can be compared with experiment. For comparison, the observed

values for the C center are given. The values from Ref. 36 are interpolated graphically.

Workers 0 S Se

Fletcher (Ref. 35)
Hjalmarson et al. (Ref. 36)
Pantelides and Sah (Ref. 37)
Pantelides (Ref. 38)
Bernholc et al. (Ref. 39)
Present Work

Orbital energies
Removal energies

Expt. [C 54.65 Td
(Present)Tj
ET
BT323.19 9.63 Td96ET
B
(54
BT
/XiXi4s 8.52 Tf
213.27 561.48 Td
(as)T
(54ET
BT
5(a4 8.17 Tf
129.01 776.12 T23544.1
(54
BT
/Xii4 8.2 Tf
393.34 671..71 Td
665.3
(54j
ET
BT5(b}]9.75 Tf
224.67 660.66 Td
(0)Tj
08)Tj
ET
B0 8.52 Tf
213.27 565803 Td
(oalue08)Tj
ET
B2 8.41 Tf
347.86 1565.32 T31565))T8nt)Tj
ET-1 8.23 Tf
184.65 624802 Td
(&)Tj)Tj
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TABLE V. Population analysis of the occupied states for the 0, S, and Se in Si. See defini-
tions in text and in Ref. 22.

Impurity

0

Angular

momentum

l=o
1=1
l =2
1=3
l =4
Qa

Qi'

2.4260
0
0
0.0934
0.0132
2.533

Qt

0
0
0.2575
0
0.0800
0.368

t)
Qi

0
0
0
0.3883
0.0689
0.457

Q
2

0
7.5024
0.8198
0.1399
0.1777
8.640

2.4260
7.5024
1.1073
0.6216
0.3494

Q'"= 12.00

l =0
1 =1
1=2
1=3
1=4
Q

lX

2.8498
0
0
0.1562
0.0170
3.0230

0
0
0.4362
0
0.1002
0.5364

0
0
0
0.5248
0.0857
0.6110

0
6.1644
1.0646
0.1809
0.1895
7.5994

2.8498
6.1644
1.5008
0.8619
0.3924

Q
'"= l l.77

Se l=o
l=l
l =2
1=3
l =4
Q

Cl

2.8128
0
0
0.1526
0.0165
2.9819

0
0
0.4695
0
0.1809
0.5714

0
0
0
0.5431
0.0877
0.6008

0
6.0450
1.1468
0.1897
0.1809
7.4624

2.8128
6.0450
1.6163
0.8854
0.3870

Q"'= 11.75

only its valence sp orbitals. Indeed, the chemistry of
S compounds suggests the decisive role of d hy-
bridization (e.g. , the near linearity of the HzS mole-
cule, impossible within the sp-bonding picture, as
opposed to the 105' bond angle in H20). We note
that the pronounced non-sp character of the central
cell charge for Si:S and Si:Se cannot be faithfully re-
vealed by tight-binding models ' (which restrict
the basis set to sp orbitals only; hence only off-center
d character is allowed), or by local pseudopotential
models3 (which force the d part of the wave func-
tions to sample the same potential that the sp piece
"feels"; hence d states are artificially pushed to
higher energies}. Table V also shows that the e and

ti character of the system is relatively small and
fairly constant along the series, consistent with the
fact that there are no strongly localized defect-
induced e and t~ resonances in the system (the shal-
low e level is extended and effective-mass-like; cf.
Sec. V). Finally, if one subtracts from the Q~ values
of Table V the corresponding values for the Si va-
cancy, ' one finds that the effective configuration of
substitutional oxygen in silicon is closer to s'p5 (sp
bonding) than to its free-atom configuration s p" (p
bonding).

IV. REVERSAL OF ORDER OF DEFECT
LEVELS WITH ATOMIC IONIZATION

ENERGIES

In this section we discuss the calculated chemical
trends in the binding energies of the a

& gap levels, in
light of intuitive chemical models advanced on the
basis of the data of Table I. The basic phenomena is
that the order of the a ~ binding energy that we find
(E, —0.06, E,—0.29, and E, —0.26 eV for Si:0,
Si:S, and Si:Se, respectively; cf. Table II}shows a re-
versal in order relative to the atomic energy differ-
ences for the s orbitals (hE, =15, 6.7, and 6.7 eV for
0, S, and Se, respectively; cf. Table I). This reversal
persists when very accurate pseudopotentials are
used (the trans-density-functional pseudopotentials
of Ref. 20, which, among others, is norm conserv-
ing), when careful basis-set convergence studies are
conducted, and when the asymptotic sum rule
[lim, EV(r) =2(Zo —Zs;) =4] is strictly en-
forced. (The reversal may not occur if there is in-
sufficient variational flexibility outside the central
cell, where most of the amplitude of the gap wave
function is concentrated. )

The underlying concept, used in defect theories as
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hV "(r)=V '(impurity) —V"'(host) (2)

associated with it. The screening is calculated as a
sum of the interelectronic Coulomb term V„[p(r)]
and the exchange-correlation term V„,[p(r)], both

diverse as effective-mass, tight-binding, ' and

chemical scaling approaches, has been that the
binding energies Eb of different impurities I in the
same host crystal are ordered
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turbed host states) and not by an overcomplete set
(e.g., a combination of pure host and impurity-atom
orbitals). The binding energies of these levels hence
reflect the degree of attractiveness of the screened
donor potential in that part of space where the de-
fect wave function is concentrated: A strongly at-
tractive donor potential [e.g., Si:S in Fig. 4(b)] leads
to a deeper gap level, whereas a weaker donor poten-
tial [Si:0,Fig. 4(b)] leads to a shallower donor ener-
gy. The atomic energies of the impurity need not
dictate the binding energies in the
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the conduction band near point X. For this to be
correct, the expansion coefficient in the general
equation (4) should yield ~A; (k)

~

=1 for this k
point, i.e., k=(2sr/a)(0, 0,0.8). We find (Fig. 9)
that the bottom of the conduction band indeed con-
tributes approximately 25% to the impurity gap




