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Abstract The presence of interfaces in fluid/solid biphasic media is known to strongly
influence their behavior both in terms of solid deformation and fluids flow. Mathematical
models have traditionally represented these interfaces as lines of no-thickness and whose
behavior is given in terms of effective permeabilities whose physical meaning is often discon-
nected to the microscopic nature of the interface. This article aims to reconcile macroscopic
and microscopic interface representations by investigating how the nature of microscopic
flows and pressures in the interface can be used to explain its macroscopic behavior. By
invoking a proper thickness average operation, we derive an closed form expression that
relates the effective interfaces permeabilities to its microscopic properties. In particular, we
find that the effective interface permeabilities are strongly influenced by three factors: the
ratio of bulk and interface permeabilities, the fluid viscosity, and the physical thickness of
the interface.
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1 Introduction

The mechanics of fluid flow in porous media is a key phenomenon in a variety of engineering
applications ranging from soil mechanics to construction materials. More recently, it has
also found a wide range of biomedical applications due to the hydrated nature of biological
media such as soft-tissues, hydrogels, (Vernerey et al. 2011b) and biological cells (Vernerey
and Farsad 2011a; Vernerey et al. 2011a). The theory of porous media, originally introduced
by Biot (1941, 1957) in the context of consolidation and later generalized to the theory of
mixtures, notably by Truesdell and Bowen (Bowen 1980; Truesdell 1999) has been very
successful at describing the interactions between fluid flow and biphasic solid deformation.
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However, as any continuum theories, mixture formulations are not readily appropriate for
describing discontinuous fields originating from the presence of interfaces (such as cracks or
embedded membranes) within a material’s microstructures. This represents a challenge since
such discontinuities may critically affect the nature of the interstitial fluid flow as well as the
elastic deformations. Various strategies have therefore been elaborated to address this issue,
with a particular interest on describing fluid flow in a fractured porous media (Barthelemym
2009; Liolios and Exadaktylos 2008; Pouya and Ghabezloo 2008; Ghabezloo and Pouya
2008). In the case where interfaces are cracks, fluid flow has traditionally been described by
a Poiseuille-type distribution that can be determined by carefully handling boundary condi-
tions between the free fluid flow in the interface and that in the surrounding porous medium
(Chandesris and Jamet 2006; Goyeaua et al. 2003). These methods particularly enabled the
derivation of useful relationships between effective permeability and internal crack struc-
ture. With the same objective in mind, different approaches have later been introduced. For
instance, one approach consisted in describing cracks as thin ellipsoidal inclusions for which
an effective permeability could be derived using self-consistent homogenization techniques
(Dormieux and Kondo 2007; Barthelemym 2009). Similarly, Lolios and Exadaktylos (2008)
and later Pouya and Ghabezloo (2008), described cracks as lines of pressure discontinuity
that could subsequently be used to determine the interfacial fluid flow. We note that while
the above studies were extremely useful in estimating the effective permeability of micro-
cracked porous media, they did not consider the case of a porous material interfaces nor did
they consider the coupling between solid deformation and interface flow.

To tackle these shortcomings, we have recently introduced a general theory (Vernerey
2011) that can describe the combined deformation and fluid flow in an elastic porous
medium with interfaces. Due to its flexibility, the formulation is able to characterize a
variety of phenomena including both interface deformation (Gurtin et al. 1998), surface
tension (Farsad et al. 2010; Vernerey and Farsad 2011b) as well as interface fluid flow and
its coupling with elastic deformations. However, as it is based on macroscopic assump-
tions, the theory does not specify the links between constitutive relation and the nature
of the underlying structure of the medium which, as a consequence, precludes any appli-
cations to real materials and interfaces. This article addresses this issue by presenting
an analytical analysis of fluid flow in a porous interface in order to provide a clear link
between macroscopic interface permeabilities and the microscopic nature of the interface it
represents (including the thickness, permeability, effective viscosity of the interface, as well
as those of its surrounding medium). To reconcile macroscopic and microscopic inter-
face descriptions, we first determine an expression for interface flows when macroscopic
pressure gradients are present by solving the Darcy–Brinkman equation in the interface
neighborhood. Upon obtaining the solution, the concept of thickness averaging introduced
in our earlier work (Vernerey 2011) is invoked in order to compute effective interface
permeabilities in terms of interface and bulk properties. Besides obtaining useful rela-
tionships relating macro- and microscopic interface descriptions, the present analysis pro-
vides an interesting insight, both qualitatively and quantitatively, onto the nature of fluid
flow in interfaces whose properties may drastically differ from that of the surrounding
medium.

This article is organized as follows. In the next section, we provide a short summary of
the theoretical framework used to model fluid flow in porous media with thin interfaces.
In Sect. 3, we concentrate on the microscopic view of the interface and derive expressions
for the normal and tangential flow across an interface of finite thickness, when subjected
to macroscopic pressure gradients. The results are then used in Sect. 4 to determine key
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Table 1 Nomenclature

Definition Symbol Unit

Symbols and notations

Average of macroscopic fields across interface {} n/a

Jump in macroscopic fields across interface [ ] n/a

component of continuum fields normal to interface Superscript ⊥ n/a
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Fig. 1 Porous solid � containing interfaces � and the normal vector to interfaces
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Fig. 2 Illustration of normal and tangential fluid velocities in the interface

where φ is a scalar quantity describing the bulk porosity. Moreover, considering an interface
with constant porosity φ̄, mass conservation in � was shown to take the following form for
an incompressible fluid:

div‖ (
φ̄q‖

s

)
+ [φq · n]

2h
= 0 (6)

div‖ (
φ̄q‖

m

)
+ 1

2I h

(
{φq · n} − φ̄q⊥

s

)
= 0, (7)

where q‖
s = q‖

s t and q‖
m = q‖

mt are the tangential interface velocity vectors whose direction
is given by the unit tangential vector t to the interface. Moreover, the symbol div‖ denotes
the surface divergence operator, and I is a moment of inertia-like quantity defined as:

I = 1

(2h)3

h∫

−h

ξ2
n dξn = 1

12
. (8)

Equation (6) describes how tangential velocities are affected by the amount of fluid com-
ing from the bulk into the interface (or vice versa). Similarly, Eq. (7) represents the mass
balance in terms of q‖

m and the average normal velocity q · n passing though the interface.
The above equations therefore naturally describe the coupling between fluid flow in the bulk
and interface.

2.3 Constitutive assumptions

Traditionally, the steady flow of a fluid through a porous medium has been described by
Darcy’s law in the form shown in (1). However, when interfaces are present, significant fluid
velocity gradients may develop in the vicinity of the interface, giving rise to boundary layers.
The characteristic length-scale of the boundary layers is very sensitive to the fluid viscosity,
a phenomenon that is well captured by the Darcy–Brinkman equation:

q = κB

μ

(−∇ p + μB
e ∇2q

)
, (9)

where μB
e is the effective Brinkman viscosity, and κB is the isotropic permeability of the

medium. The first term within the parenthesis may be interpreted as a driving force arising
from a pressure gradient and the second term represents a resisting force due to fluid viscos-
ity. Now turning to interface flows, we have shown in Vernerey (2011) that for the case of
isotropic interfaces, a Darcy-type relation can be established in terms of four macroscopic
scalar permeabilities κ⊥

s , κ
‖
s , κ⊥

m , and κ
‖
m such that:

123



820 F. J. Vernerey

q⊥
s = −κ⊥

s

μ

[p]

2h
q‖

s = −κ
‖
s

μ
{∇ p}‖ (10)

q⊥
m = −κ⊥

m

μ
[∇ p]⊥ q‖

m = −κ
‖
m

μ
[∇ p]‖ . (11)

We note here that the above permeabilities physically represent the resistance of the interface
to flow; More specifically, the permeabilities κ⊥

s and κ
‖
s provide a measure of the resistance



The Effective Permeability of Cracks and Interfaces 821

{κ, μe} =
{
κ I , μI

e

}
ξn ∈ [−h, h] (13)

= {
κB, μB

e

}
ξn ∈] − ∞, −h[∪]h, ∞[. (14)

In addition, the pressure gradient profile in the interface may be written as a Taylor series
around the center of the interface (ξn = 0) in terms of the macroscopic mean pressure gradient
{∇ p} and the macroscopic jump in pressure gradient [∇ p] across � as:

∇ p (ξn) = {∇ p} − [∇ p]

2
ξn ∈] − ∞, −h[

= {∇ p} + [∇ p]

2h
ξn + o

(
ξ2

n

)
ξn ∈ [−h, h] (15)

= {∇ p} + [∇ p]

2
ξn ∈]h, ∞[

Upon solving the microscopic flow q̃ with (12), the macroscopic velocities qs and qm are
found by the averaging operation:

qs = 1

2h

h∫

−h

q̃(ξn)dξn, qm = 1

(2h)2

h∫

−h

q̃(ξ
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Fig. 4 Schematic displaying the
change of normal flow through
the interface. Note that for
incompressible fluids, a variation
of flow is only possible if
tangential flow is allowed

where we used the fact that {∇ p}⊥ = [p]/2h. Substituting (19) into (18) immediately leads
to an expression for the normal interface velocity q̃n :

q̃n = − κ I

2μh

(
[p] + [∇ p]⊥ ξn

)
. (20)

This expression shows that the normal velocity arises from a jump in pressure across the
interface and exhibits a linear variation when a jump [∇ p]⊥ in pressure gradient is present.
Note that in order to ensure that the condition of incompressibility at the microscale, one
should verify that divq̃ = ∂ q̃n/∂ξn + ∂ q̃t /∂ξt = 0. Assessing the divergence with the help
of Eq. (20) implies that the normal flow generates a tangential flow q̃t that varies in the tan-

gential direction such that ∂ q̃t /∂ξt = − κ I

2n
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Fig. 5 a Effect of interface thickness on tangential flow at γ = 10 and β = 1. b Effect of interface perme-
ability on tangential flow at h̄ = 1 and β = 1. c Effect of effective viscosity on tangential flow at h̄ = 1 and
γ = 10

The final solution q̃t is subsequently written as a combination of v̄ and w̄ as:

q̃t = κ I

μ

(
v̄ {∇ p}‖ + w̄

[∇ p]‖

2

)
. (35)

It can be seen that the nature of the interface tangential flow mainly depends on three
parameters that consists of h̄, β and γ as depicted in Fig. 5. It is first important to note that
interface thickness is defined in relation to the length-scale defined by

√
κ I μI

e/μ. In other
words, a given value of h may be considered small for a highly viscous fluid and a small
interface permeability, while it may be considered large in the opposite situation. Figure 5a
shows the nondimensional tangential velocities for different values of h̄ when γ = 10 and
β = 1. Generally, the figure shows that for small values of h̄, the interface dimensions are
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too small in order for the tangential flow to fully develop independently from the bulk flow.
However, as h̄ increases to values close to unity, interface flow starts developing but is still
constrained by a transition zone between bulk and interface. However, as h̄ increases to larger
values, the characteristic length of the transition dramatically reduces such that interface and
bulk flows become quasi independent at h̄ = 50. These observations are valid for both the
symmetric and antisymmetric parts of the flows, which implies that the development of both
the mean and first moment of interface flow are promoted by large values of h̄.

The effect of interface permeability, characterized by the ratio γ = κ I /κB is also illus-
trated in Fig. 5b for constant interface thickness (h̄ = 1) and effective viscosity ratio (β = 1).
As expected, interface flow is slower in the interface for γ < 1 and faster for γ > 1. In addi-
tion, as γ increases, the first moment of interface flow can fully develop in the interface, which
triggers a sharp flow discontinuity across the interface. However, as γ decreases below unity,
the interface becomes more resistant to b f qm and the transition region (or boundary layer)
mostly occurs in the bulk.

Similarly, the effective viscosity ratio β = μI
e /μB

e plays a large influence on the extend of
the boundary layer near the interface as shown in Fig. 5c. Generally, the extent of the influ-
ence of interface flow on bulk flow increases with decreasing β (or increasing bulk viscosity
μB

e ).

4 Macroscopic Permeabilities and Their Relation to Microscopic Interface Properties

To bridge micro and macroscopic interface descriptions, we now seek to express macroscopic
permeabilities introduced in (10) and (11) in terms of interface properties h̄, γ , and β. This
may be accomplished by projecting the averaging operation defined in (16) along the normal
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4.2 Tangential permeabilities

In turn, macroscopic tangential permeabilities are obtained by projecting (16) onto the tan-
gential direction as follows:

q‖
s = 1

2h

2s
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Fig. 6 a Effect of interface thickness effective permeabilities κ̄
‖
s and κ̄

‖
m . For all cases, β = 1. Note that the

permeability κ̄
‖
m exhibits a maximum around h̄ = 1 when γ < 1. This can be explained in terms of velocity

ratios as shown in the last figure for γ = 0.2 and β = 1. It can clearly be seen that the maximum flow q‖
m

is observed when h̄ = 1. b Effect of permeability ratio γ
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for large thickness (h̄ → ∞), the curves converges to horizontal lines corresponding to
κ

‖
s = κ I and κ

‖
m = Iκ I .

Finally, Fig. 6c illustrates the role of permeability ratio β = μI
e/μB

e on bulk/interface
interactions. Generally, as β increases, the effect of bulk velocity on interface permeabilities
becomes more and more pronounced. This generally tends to increase κ‖ when γ < 1 (i.e.,
when bulk velocity is larger than interface velocity) and decrease κ‖ when γ >
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