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are equal (set to 1). Because not all of the models are nested,

we used the Akaike information criterion (AIC) (Burnham

& Anderson, 2002) to select among the 18 models; the best

fit model with the lowest AIC score was used to infer the

relative probabilities of ancestral ranges within the

phylogeny.

Estimation of number and type of biogeographical

events

We estimated the number and type of biogeographical events

using BSM implemented in ‘BioGeoBEARS’ (Matzke, 2015).

Previous implementations of stochastic mapping used transi-

tion rate models (Pagel, 1999) to simulate the histories of

mutations or trait changes (Huelsenbeck et al., 2003).

Whereas the transition rate models involve only trait gain

and loss, the biogeographical models used in BSM will

include a range of anagenetic and cladogenetic events

(Fig. 1). After providing a biogeographical model with speci-

fied parameters, BSM generates simulated histories (‘realiza-

tions’), including the times and locations of all events along

the branches in that simulation. These realizations of possible

histories are constrained to produce the observed data given

the phylogeny, and averaging over many realizations will

result in the same ancestral state probabilities as those calcu-

lated analytically under the ML model (see Appendix S1 for



to have expanded its range from South America to South

and North America, and this expansion was followed by a

division into subclades most diverse in South and North

America (Appendix S2; see also Mione et al., 1994).

Focusing on dispersal events, we found that movement

patterns varied tremendously across areas. The highest num-

ber of dispersals involved movements from South America

to Central America (c. 49 of 256 total estimated events), clo-

sely followed by movements from South America to North

America (c. 42 of 256) (Fig. 4a). Overall, South America was

the source for 47% of the estimated dispersal events. North

America was the next most common source (20%), and

most of these dispersals were towards Central America

(Figs 4a & 5). In total, dispersals among the four New World

areas accounted for 81% of the events, while dispersal among

the three Old World regions or between the Old World and

New World were less common (10% and 9%, respectively).

Among the Old World areas, Australia and the nearby

islands of Oceania were the least common source and sink

for dispersal events, and three of the estimated 11 dispersals

into the area comprise the Hawaiian taxa previously shown



related regions. Indeed, movements between the Old World

and New World accounted for just 6% of estimated range

expansions, but 24% of the estimated founder events.

Regardless of the type of dispersal event, we inferred

strong asymmetry in the movements between areas. For

example, dispersal events from Central America to the Carib-

bean were more than twice as common as those in the oppo-

site direction (10.12 � 1.41 vs. 4.20 � 1.14; Fig. 4a). Such

directionality was observed for nearly all pairs of areas (com-

pare upper diagonals and lower diagonals in Fig. 4) and was

most marked for events involving South America (see also

Fig. 5). The most prominent exceptions to this overall trend

are dispersals between Africa and Eurasia, which have

occurred in approximately equal numbers in both directions

(Figs 4 & 5). The general asymmetry of transitions was con-

sistent across all of the individual BSM realizations (chi-

square contingency analysis, P < 1 9 10�45 for each of the

100 realizations).

DISCUSSION

Our analyses of the historical biogeography of Solanaceae

confirm that the early evolution of the family took place in

South America. Moreover, major clades in the family, such

as the large ‘x = 12’ clade (genera with a base chromosome

number of 12) and the Solaneae (Solanum+Jaltomata), are

Figure 3 Representation of timing of dispersal events in the Solanaceae chronogram. Range expansions = thick branches, founder
events = full circles. Transoceanic dispersals are represented in orange and non-transoceanic dispersals in black. Thicker branches and

nodes with circles represented here were found in at least 95% of BSM realizations. Clade names follow Fig. 2.
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branches and at nodes, including any of the events incorpo-

rated in the model. By summarizing over many histories, we

can extract distributions for the numbers of the events and

determine the relative importance of each type of event (e.g.

range expansions, vicariance) in shaping present-day distri-

butions. Inferring the numbers and types of biogeographical

events can also be achieved in a parsimony framework (e.g.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the

online version of this article:

Appendix S1 Supplementary tables and algorithm valida-

tion.

Appendix S2 Maximum likelihood ancestral range esti-

mates.

Appendix S3 Example of a BSM realization.
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